RNA targeting

  • 文章类型: Journal Article
    CRISPR技术已经开始彻底改变T细胞疗法;然而,传统的CRISPR-Cas9基因组编辑工具的安全性有限,功效,和范围。为了应对这些挑战,我们开发了多重效应引导阵列(MEGA),使用RNA指导的T细胞转录组的可编程和可扩展调节的平台,CRISPR-Cas13d的RNA靶向活性。MEGA可以实现定量,可逆,在原代人T细胞中大量多路复用基因敲低,而不靶向或切割基因组DNA。将MEGA应用于CAR-T细胞衰竭模型,我们通过组合CRISPR筛选,强力抑制抑制性受体上调,并发现配对的T细胞功能调节因子.我们还实施了MEGA的可药用调节,以不依赖受体的方式控制CAR激活。最后,MEGA能够实现免疫调节代谢途径的多重破坏,以增强体外和体内的CART细胞适应性和抗肿瘤活性。MEGA提供了一个多功能的合成工具包,用于癌症免疫疗法及以后的应用。
    CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dhuri等人的两份报告。和Oyaghire等人。,分别,表明,通过在人工核酸的骨架上安装手性中心,肽核酸(PNA),可以实现增强的miRNA靶向和基因组修饰,对对抗癌症和β-地中海贫血具有重要意义。
    Two reports by Dhuri et al. and Oyaghire et al., respectively, show that, through installing chiral centers at the backbone of the artificial nucleic acid, peptide nucleic acid (PNA), enhanced miRNA targeting and genome modification can be achieved, with important implications in fighting cancers and β-thalassemia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5\' and 3\' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.
    信使RNA(mRNA)药物在多种疾病的预防和治疗中展现了巨大的应用价值。最大程度提高mRNA的稳定性和翻译效率,保证mRNA免受核酸酶的降解并靶向特定组织和细胞是临床转化的要求。通过修饰核苷酸降低mRNA免疫原性,密码子优化增加mRNA翻译效率,5´帽结构和3´多聚腺苷酸尾结构增加mRNA稳定性,以及添加5´和3´非翻译区功能调控mRNA稳定性和翻译效率。通过纳米粒递送系统保护mRNA不被核酸酶降解,增加mRNA血液循环,并帮助mRNA进入细胞质发挥治疗和预防作用。本文综述了mRNA药物的制剂工程技术进展,讨论了提高mRNA稳定性和翻译效率的方法及设计原理,总结了具有产业转换潜力的mRNA递送系统的设计要求及其临床应用,并展望了mRNA药物未来可能的研究方向,以满足实现个性化精准医疗的需求。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nuclease and to target to specific tissues and cells. The mRNA immunogenicity can be reduced by nucleotide modification, and its translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5\' and 3\' non-translational region regulates mRNA translation initiation and protein production. A nanoparticle delivery system protects mRNA from degradation by ubiquitous nuclease, enhances its circulation concentration and assists it entrancing cytoplasm for the purpose of treatment and prevention. In this article, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential of industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the need for personalized precision medicine.
    信使RNA(mRNA)药物在多种疾病的预防和治疗中展现了巨大的应用价值。最大程度提高mRNA的稳定性和翻译效率,保证mRNA免受核酸酶的降解并靶向特定组织和细胞是临床转化的要求。通过修饰核苷酸降低mRNA免疫原性,密码子优化增加mRNA翻译效率,5´帽结构和3´多聚腺苷酸尾结构增加mRNA稳定性,以及添加5´和3´非翻译区功能调控mRNA稳定性和翻译效率。通过纳米颗粒递送系统保护mRNA不被核酸酶降解,增加mRNA血液循环,并帮助mRNA进入细胞质发挥治疗和预防作用。本文综述了mRNA药物的制剂工程技术进展,讨论了提高mRNA稳定性和翻译效率的方法及设计原理,总结了具有产业转换潜力的mRNA递送系统的设计要求及其临床应用,并展望了mRNA药物未来可能的研究方向,以满足实现个性化精准医疗的需求。.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原核生物成簇的规则间隔的短回文重复序列和CRISPR相关(CRISPR-Cas)系统通过使用RNA指导的内切核酸酶识别和消除入侵的外源核酸来提供适应性免疫。II型Cas9、V型Cas12、VI型Cas13和III型Csm/Cmr复合物已被充分表征和开发为用于在原核和真核细胞中选择性靶向和操纵感兴趣的RNA分子的可编程平台。这些Cas效应子表现出显著的核糖核蛋白(RNP)组成多样性,靶标识别和裂解机制,和自我歧视机制,用于各种RNA靶向应用。这里,我们总结了目前对这些Cas效应子的机制和功能特征的理解,概述到目前为止建立的RNA检测和操作工具箱,包括击倒,编辑,成像,修改,绘制RNA-蛋白质相互作用的图谱,并讨论基于CRISPR的RNA靶向工具的未来方向。本文分为:RNA方法>细胞中的RNA分析RNA加工>RNA编辑和修饰RNA与蛋白质和其他分子的相互作用>蛋白质-RNA相互作用:功能含义。
    Prokaryotic clustered regularly interspaced short palindromic repeats and CRISPR associated (CRISPR-Cas) systems provide adaptive immunity by using RNA-guided endonucleases to recognize and eliminate invading foreign nucleic acids. Type II Cas9, type V Cas12, type VI Cas13, and type III Csm/Cmr complexes have been well characterized and developed as programmable platforms for selectively targeting and manipulating RNA molecules of interest in prokaryotic and eukaryotic cells. These Cas effectors exhibit remarkable diversity of ribonucleoprotein (RNP) composition, target recognition and cleavage mechanisms, and self discrimination mechanisms, which are leveraged for various RNA targeting applications. Here, we summarize the current understanding of mechanistic and functional characteristics of these Cas effectors, give an overview on RNA detection and manipulation toolbox established so far including knockdown, editing, imaging, modification, and mapping RNA-protein interactions, and discuss the future directions for CRISPR-based RNA targeting tools. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经母细胞瘤RAS(NRAS)是一种癌基因,在包括黑素瘤和急性髓性白血病在内的癌症中失调并高度突变。NRASmRNA的5'非翻译区(UTR)(5'UTR)包含调节翻译的G-四链体(G4)。在这里,我们报告了一类新的小分子,它与位于NRASmRNA5'UTR中的G4结构结合。我们使用小分子微阵列筛选来鉴定以亚微摩尔亲和力选择性结合NRAS-G4的分子。一种化合物在体外抑制NRAS的翻译,但对细胞中的NRAS水平仅显示中等作用。cDNA末端的快速扩增和RT-PCR分析揭示了主要的NRAS转录物不具有G4结构。因此,尽管NRAS转录本在许多细胞系中缺乏G4,但靶向5'UTR内的折叠区域以控制翻译的概念仍然是一个非常有吸引力的策略。
    Neuroblastoma RAS (NRAS) is an oncogene that is deregulated and highly mutated in cancers including melanomas and acute myeloid leukemias. The 5\' untranslated region (UTR) (5\' UTR) of the NRAS mRNA contains a G-quadruplex (G4) that regulates translation. Here we report a novel class of small molecule that binds to the G4 structure located in the 5\' UTR of the NRAS mRNA. We used a small molecule microarray screen to identify molecules that selectively bind to the NRAS-G4 with submicromolar affinity. One compound inhibits the translation of NRAS in vitro but showed only moderate effects on the NRAS levels in cellulo. Rapid Amplification of cDNA Ends and RT-PCR analysis revealed that the predominant NRAS transcript does not possess the G4 structure. Thus, although NRAS transcripts lack a G4 in many cell lines the concept of targeting folded regions within 5\' UTRs to control translation remains a highly attractive strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cas13是迄今为止发现的唯一CRISPR/Cas系统,在保持染色体完整性的同时靶向RNA链。Cas13b或Cas13d通过crRNA指导切割RNA。然而,间隔序列特征的影响,例如长度和序列偏好,Cas13b和Cas13d的活性尚不清楚。我们的研究表明Cas13b和Cas13d对gRNA的序列组成都没有特别的偏好,包括crRNA的序列及其在靶RNA上的侧翼位点。然而,crRNA,与目标RNA的中间部分互补,似乎对Cas13b和Cas13d都显示出更高的切割效率。至于crRNA的长度,Cas13b最合适的crRNA长度是22-25nt,短至15nt的crRNA仍然是有功能的。然而,Cas13d需要更长的crRNA,和22-30ntcrRNA可以达到良好的效果。Cas13b和Cas13d均显示出加工前体crRNA的能力。我们的研究表明,Cas13b可能比Cas13d具有更强的前体加工能力。关于Cas13b或Cas13d在哺乳动物中的应用的体内研究很少。用转基因小鼠和尾静脉流体动力学注射的方法,我们的研究表明,它们在体内对靶RNA都有很高的敲低效率。这些结果表明,Cas13b和Cas13d在体内RNA操作和疾病治疗方面具有巨大潜力,而不会破坏基因组DNA。本文受版权保护。保留所有权利。
    Cas13 are the only CRISPR/Cas systems found so far, which target RNA strand while preserving chromosomal integrity. Cas13b or Cas13d cleaves RNA by the crRNA guidance. However, the effect of the characteristics of the spacer sequences, such as the length and sequence preference, on the activity of Cas13b and Cas13d remains unclear. Our study shows that neither Cas13b nor Cas13d has a particular preference for the sequence composition of gRNA, including the sequence of crRNA and its flanking sites on target RNA. However, the crRNA, complementary to the middle part of the target RNA, seems to show higher cleavage efficiency for both Cas13b and Cas13d. As for the length of crRNAs, the most appropriate crRNA length for Cas13b is 22-25 nt and crRNA as short as 15 nt is still functional. Whereas, Cas13d requires longer crRNA, and 22-30 nt crRNA can achieve good effect. Both Cas13b and Cas13d show the ability to process precursor crRNAs. Our study suggests that Cas13b may have a stronger precursor processing ability than Cas13d. There are few in vivo studies on the application of Cas13b or Cas13d in mammals. With the methods of transgenic mice and hydrodynamic injection via tail vein, our study showed that both of them had high knock-down efficiency against target RNA in vivo. These results indicate that Cas13b and Cas13d have great potential for in vivo RNA operation and disease treatment without damaging genomic DNA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然超过98%的人类基因组是非编码的,市场上几乎所有的药物都针对大约700种疾病相关蛋白中的一种。然而,现在,越来越多的疾病归因于非编码RNA,靶向它们的能力将极大地扩展药物开发的化学空间。我们最近设计了一种基于亲和选择质谱的筛选策略,并成功地鉴定了非编码RNA原型的生物活性化合物。Xist.一旦这样的化合物,称为X1,具有药物样特性,并在体外和体内特异性结合Xist的RepA基序。小角度X射线散射分析表明,X1改变了溶液中RepA的构象,从而解释了同源相互作用蛋白因子(PRC2和SPEN)的置换和X染色体失活的抑制。从这个角度来看,我们讨论了从这些概念验证实验中吸取的教训,并建议RNA可以被药物样化合物系统地靶向,以破坏RNA的结构和功能。
    Although more than 98% of the human genome is noncoding, nearly all drugs on the market target one of about 700 disease-related proteins. However, an increasing number of diseases are now being attributed to noncoding RNA and the ability to target them would vastly expand the chemical space for drug development. We recently devised a screening strategy based upon affinity-selection mass spectrometry and succeeded in identifying bioactive compounds for the noncoding RNA prototype, Xist. One such compound, termed X1, has drug-like properties and binds specifically to the RepA motif of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that X1 changes the conformation of RepA in solution, thereby explaining the displacement of cognate interacting protein factors (PRC2 and SPEN) and inhibition of X-chromosome inactivation. In this Perspective, we discuss lessons learned from these proof-of-concept experiments and suggest that RNA can be systematically targeted by drug-like compounds to disrupt RNA structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三十多年来,已知RNA是靶向的相关和有吸引力的大分子,但弄清楚哪些RNA应该被靶向以及如何仍然具有挑战性。近年来,筛查方法的融合,药物优化,和靶标验证,这些验证导致了一些用于临床应用的RNA靶向疗法的批准。这种专注的观点旨在强调-但不是详尽地审查-这些成功的关键因素,同时指出值得考虑的关键方面以取得进一步突破。
    For more than three decades, RNA has been known to be a relevant and attractive macromolecule to target but figuring out which RNA should be targeted and how remains challenging. Recent years have seen the confluence of approaches for screening, drug optimization, and target validation that have led to the approval of a few RNA-targeting therapeutics for clinical applications. This focused perspective aims to highlight - but not exhaustively review - key factors accounting for these successes while pointing at crucial aspects worth considering for further breakthroughs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无义突变,占疾病相关突变的>20%,导致翻译过早终止。用停止密码子中的假尿苷代替尿苷抑制翻译终止,它可以用来介导过早终止密码子(PTC)的读取。这里,我们提出了RESTART,一个可编程的RNA基础编辑器,逆转哺乳动物细胞中PTC诱导的翻译终止。RESTART利用工程化的指导snoRNA(gsnoRNA)和内源性H/ACA盒snoRNP机制来实现精确的假尿苷化。我们还鉴定并优化了gsnoRNA支架以提高编辑效率。出乎意料的是,我们发现假尿苷合成酶DKC1的次要同工型,缺乏C端核定位信号,大大提高了PTC的通读效率。尽管RESTART诱导了限制性脱靶假尿嘧啶化,它们没有改变编码信息,也没有改变脱靶的表达水平.最后,RESTART能够在原代细胞中实现稳健的假尿苷化,并在疾病相关环境中实现功能性PTC读通。总的来说,RESTART是用于研究和治疗的有前途的RNA编辑工具。
    Nonsense mutations, accounting for >20% of disease-associated mutations, lead to premature translation termination. Replacing uridine with pseudouridine in stop codons suppresses translation termination, which could be harnessed to mediate readthrough of premature termination codons (PTCs). Here, we present RESTART, a programmable RNA base editor, to revert PTC-induced translation termination in mammalian cells. RESTART utilizes an engineered guide snoRNA (gsnoRNA) and the endogenous H/ACA box snoRNP machinery to achieve precise pseudouridylation. We also identified and optimized gsnoRNA scaffolds to increase the editing efficiency. Unexpectedly, we found that a minor isoform of pseudouridine synthase DKC1, lacking a C-terminal nuclear localization signal, greatly improved the PTC-readthrough efficiency. Although RESTART induced restricted off-target pseudouridylation, they did not change the coding information nor the expression level of off-targets. Finally, RESTART enables robust pseudouridylation in primary cells and achieves functional PTC readthrough in disease-relevant contexts. Collectively, RESTART is a promising RNA-editing tool for research and therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号