RNA Polymerase II

RNA 聚合酶 II
  • 文章类型: Journal Article
    转录阻断性病变(TBL)停滞延伸RNA聚合酶II(PolII),然后启动转录偶联修复(TCR)以去除TBL并允许转录恢复。在没有TCR的情况下,驱逐病变停滞的PolII是解决损伤的替代途径所必需的,但机制尚不清楚。使用蛋白质相关DNA损伤测序(PADD-seq),这项研究表明,p97-蛋白酶体途径可以独立于修复而驱逐病变停滞的PolII。TCR和非修复性驱逐都需要CSA和泛素化。然而,p97对于TCR高细胞中的TCR和PolII驱逐是可有可无的,突出显示修复优先于独立于修复的驱逐。此外,RPB1-K1268的泛素化对这两种途径都很重要,具有USP7去泛素酶活性,可促进TCR,而不消除不依赖修复的PolII释放。总之,这项研究阐明了病变停滞的PolII的命运,并可能揭示由TCR基因缺陷引起的遗传疾病的分子基础。
    Transcription-blocking lesions (TBLs) stall elongating RNA polymerase II (Pol II), which then initiates transcription-coupled repair (TCR) to remove TBLs and allow transcription recovery. In the absence of TCR, eviction of lesion-stalled Pol II is required for alternative pathways to address the damage, but the mechanism is unclear. Using Protein-Associated DNA Damage Sequencing (PADD-seq), this study reveals that the p97-proteasome pathway can evict lesion-stalled Pol II independently of repair. Both TCR and repair-independent eviction require CSA and ubiquitination. However, p97 is dispensable for TCR and Pol II eviction in TCR-proficient cells, highlighting repair\'s prioritization over repair-independent eviction. Moreover, ubiquitination of RPB1-K1268 is important for both pathways, with USP7\'s deubiquitinase activity promoting TCR without abolishing repair-independent Pol II release. In summary, this study elucidates the fate of lesion-stalled Pol II, and may shed light on the molecular basis of genetic diseases caused by the defects of TCR genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA聚合酶II(RNAPII)的转录周期在每个阶段都受到细胞周期蛋白依赖性蛋白激酶(CDK)和蛋白磷酸酶网络的调节。RNAPII从起始到终止的进展通过改变其最大亚基RPB1的高度重复羧基末端结构域(CTD)上的磷酸化模式来标记。表明CTD代码的存在.并行,保守的转录延伸因子SPT5,DRB敏感性诱导因子(DSIF)的大亚基,在磷酸化状态中经历时空调节的变化,这可能与转录周期阶段之间的转换直接相关。在这里,我们回顾了从最近的结构中获得的见解,生物化学,和人类SPT5的遗传分析表明,其两个磷酸化区域在转录的不同点执行不同的功能。在一个灵活的磷酸化,RNA结合接头促进从启动子近端暂停的释放-通常是基因表达的限速步骤-而重复羧基末端区域的修饰被认为有利于持续延伸,并在终止之前删除。两个基序中的磷酸化都取决于CDK9,即正转录延伸因子b(P-TEFb)的催化亚基;它们在染色质上的积累时间不同,在转录周期中的功能可能反映了它们被不同磷酸酶的去除,CDK9磷酸化的不同动力学,或两者兼而有之。SPT5调控的扰动通过很大程度上未知的机制对模型生物的生存能力和发育有深远的影响。虽然修饰SPT5的酶已成为癌症的潜在治疗靶标;因此阐明推定的SPT5代码是高度优先事项。
    The RNA polymerase II (RNAPII) transcription cycle is regulated at every stage by a network of cyclin-dependent protein kinases (CDKs) and protein phosphatases. Progression of RNAPII from initiation to termination is marked by changing patterns of phosphorylation on the highly repetitive carboxy-terminal domain (CTD) of RPB1, its largest subunit, suggesting the existence of a CTD code. In parallel, the conserved transcription elongation factor SPT5, large subunit of the DRB sensitivity-inducing factor (DSIF), undergoes spatiotemporally regulated changes in phosphorylation state that may be directly linked to the transitions between transcription-cycle phases. Here we review insights gained from recent structural, biochemical, and genetic analyses of human SPT5, which suggest that two of its phosphorylated regions perform distinct functions at different points in transcription. Phosphorylation within a flexible, RNA-binding linker promotes release from the promoter-proximal pause-frequently a rate-limiting step in gene expression-whereas modifications in a repetitive carboxy-terminal region are thought to favor processive elongation, and are removed just prior to termination. Phosphorylations in both motifs depend on CDK9, catalytic subunit of positive transcription elongation factor b (P-TEFb); their different timing of accumulation on chromatin and function during the transcription cycle might reflect their removal by different phosphatases, different kinetics of phosphorylation by CDK9, or both. Perturbations of SPT5 regulation have profound impacts on viability and development in model organisms through largely unknown mechanisms, while enzymes that modify SPT5 have emerged as potential therapeutic targets in cancer; elucidating a putative SPT5 code is therefore a high priority.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核基因组由RNA聚合酶II(polII)在基因内和基因间区域广泛转录。包含聚合酶的POLII延伸复合物,DNA模板和新生的RNA转录物必须是极其渐进的,以便转录最长的基因,这些基因超过1兆碱基长,需要数小时才能遍历。需要专用的终止机制来破坏这些高度稳定的复合物。转录终止不仅发生在基因的3'末端,一旦全长转录物已经产生,而且在基因内和杂乱转录的基因间区域。在这些后面的位置终止被称为“过早”,因为它不是响应于标记基因3'末端的特定信号而触发的,就像一个polyA网站。过早终止的一个目的是将聚合酶从基因间区域去除,因为它们可能会干扰重叠基因的转录或复制叉的进展。最近已经认识到过早终止在基因内以令人惊讶的高速率发生,其中推测其服务于调节或质量控制功能。在这篇综述中,我总结了目前对过早终止的不同机制及其潜在功能的理解。
    Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3\' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed \"premature\" because it is not triggered in response to a specific signal that marks the 3\' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are \"not wanted\" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA聚合酶II(PolII)功能障碍经常暗示在人类疾病中。了解其功能机制对于设计创新的治疗策略至关重要。为了可视化其与基因和新生RNA的超分子相互作用,我们产生了携带约335个连续拷贝的重组β-珠蛋白基因的人细胞系。共聚焦显微镜显示PolII在这些相同的基因拷贝周围没有均匀浓缩。此外,PolII信号与基因及其新生RNA部分重叠,揭示了广泛的区隔。使用携带单拷贝β-珠蛋白基因的细胞系,我们还测试了催化死亡的CRISPR相关系统9(dCas9)与不同基因区域的结合是否会影响PolII的转录活性。我们使用染色质免疫沉淀和液滴数字逆转录PCR评估PolII定位和新生RNA水平,分别。以gRNA结合的链特异性方式检测到启动子区域中积累的转录暂停的PolII的一些富集,新生RNA水平没有下降。PolII在DNA结合的dCas9存在下保持其转录活性。我们的发现有助于进一步了解人类细胞中mRNA转录的复杂机制。
    RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant β-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the β-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们先前的研究确定,在广泛的肿瘤细胞中升高SOX2会导致肿瘤生长停滞的可逆状态。了解肿瘤细胞生长如何被抑制的努力导致SOX2:MYC轴的发现,当SOX2升高时,该轴负责下调c-MYC(MYC)。虽然我们已经确定提高SOX2下调MYC转录,责任机制尚未确定。鉴于临床上针对MYC的挑战,我们着手确定如何提高SOX2下调MYC转录。在这项研究中,我们关注MYC启动子区和MYC基因座的上游区域,该区域含有包含5个MYC增强子的MYC超增强子,并且与几种癌症相关.在这里,我们报告了BRD4和p300与上游MYC超增强子以及MYC启动子区域中的每个MYC增强子相关联,并且升高SOX2会减少BRD4和p300对这些位点的募集。此外,我们确定,升高SOX2会导致MYC超增强子和MYC启动子区域中SOX2和H3K27me3的关联增加。重要的是,我们得出的结论是,MYC超级增强子中SOX2的增加会导致一系列事件,最终导致MYC转录的抑制。一起,我们的研究确定了一种新的分子机制,能够在两种截然不同的肿瘤类型中调节MYC转录,并为两种主要调节因子之间的分子相互关系提供了新的机制见解。SOX2和MYC,广泛参与多种癌症。
    Our previous studies determined that elevating SOX2 in a wide range of tumor cells leads to a reversible state of tumor growth arrest. Efforts to understand how tumor cell growth is inhibited led to the discovery of a SOX2:MYC axis that is responsible for downregulating c-MYC (MYC) when SOX2 is elevated. Although we had determined that elevating SOX2 downregulates MYC transcription, the mechanism responsible was not determined. Given the challenges of targeting MYC clinically, we set out to identify how elevating SOX2 downregulates MYC transcription. In this study, we focused on the MYC promoter region and an upstream region of the MYC locus that contains a MYC super-enhancer encompassing five MYC enhancers and which is associated with several cancers. Here we report that BRD4 and p300 associate with each of the MYC enhancers in the upstream MYC super-enhancer as well as the MYC promoter region and that elevating SOX2 decreases the recruitment of BRD4 and p300 to these sites. Additionally, we determined that elevating SOX2 leads to increases in the association of SOX2 and H3K27me3 within the MYC super-enhancer and the promoter region of MYC. Importantly, we conclude that the increases in SOX2 within the MYC super-enhancer precipitate a cascade of events that culminates in the repression of MYC transcription. Together, our studies identify a novel molecular mechanism able to regulate MYC transcription in two distinctly different tumor types and provide new mechanistic insights into the molecular interrelationships between two master regulators, SOX2 and MYC, widely involved in multiple cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA聚合酶II(RNAPolII)介导的转录,蛋白质复合物在不同步骤的高度调节过程。这里,研究RNAPolII和转录因子结合和解离动力学,我们使用CRISPR-Cas9产生了内源性光活化GFP(PA-GFP)和HaloTag敲击素,使我们能够跟踪果蝇多烯染色体中诱导的Hsp70位点的分子群体。我们发现在热休克反应的早期,小RNAPolII和DRB敏感性诱导因子(DSIF)被重新用于迭代循环的转录。令人惊讶的是,尽管通过染色质免疫沉淀(ChIP)测定在整个基因体中发现了PAF1和Spt6,它们表现出明显不同的结合行为。此外,我们发现PAF1和Spt6仅在正转录延伸因子(P-TEFb)介导的磷酸化和RNAPolII启动子近端暂停逃逸后募集。最后,我们观察到PAF1对于核小体密度低的高表达基因的转录可能是消耗性的。因此,我们的活细胞成像数据为转录调控的机制模型提供了关键约束.
    RNA polymerase II (RNA Pol II)-mediated transcription is a critical, highly regulated process aided by protein complexes at distinct steps. Here, to investigate RNA Pol II and transcription-factor-binding and dissociation dynamics, we generated endogenous photoactivatable-GFP (PA-GFP) and HaloTag knockins using CRISPR-Cas9, allowing us to track a population of molecules at the induced Hsp70 loci in Drosophila melanogaster polytene chromosomes. We found that early in the heat-shock response, little RNA Pol II and DRB sensitivity-inducing factor (DSIF) are reused for iterative rounds of transcription. Surprisingly, although PAF1 and Spt6 are found throughout the gene body by chromatin immunoprecipitation (ChIP) assays, they show markedly different binding behaviors. Additionally, we found that PAF1 and Spt6 are only recruited after positive transcription elongation factor (P-TEFb)-mediated phosphorylation and RNA Pol II promoter-proximal pause escape. Finally, we observed that PAF1 may be expendable for transcription of highly expressed genes where nucleosome density is low. Thus, our live-cell imaging data provide key constraints to mechanistic models of transcription regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这个问题上,Versluis等人1使用高度敏感的活细胞成像系统来检查Hsp70基因座上各种关键转录延伸调节剂的转录动力学和功能。
    In this issue, Versluis et al.1 use a highly sensitive live-cell imaging system to examine transcription dynamics and functions of various key transcription elongation regulators at the Hsp70 loci.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管转录因子(TFs)在发病机理中的意义已经确立,它们作为药理学靶标的利用受到调节其蛋白质相互作用的内在挑战的限制。缺乏确定的小分子结合袋和TF的核定位不利于使用传统工具。适体具有大的分子量,膨胀性阻塞表面和有效的细胞内化,使它们成为调节TF相互作用的引人注目的工具。这里,我们报告了一种称为Blocker-SELEX的结构指导设计策略,以开发选择性阻断TF相互作用的抑制性适体(iAptamers)。我们的方法导致发现了协同破坏SCAF4/SCAF8-RNAP2相互作用的iAptamer,RNAP2依赖性基因表达失调,会损害细胞增殖。该方法进一步应用于开发阻断WDR5-MYC相互作用的iAptamer。总的来说,我们的研究强调了iAptamers在破坏致病性TF相互作用中的潜力,暗示它们在研究TF相互作用的生物学功能和核酸药物发现中的潜在用途。
    Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:在过去的发芽酵母工作中,我们确定了组蛋白伴侣复合物yFACT与转录基因之间适当相互作用所需的核小体区域。该区域内的特定组蛋白突变导致yFACT占用向基因的3'端转移,我们归因于转录后yFACT与DNA解离受损的缺陷。在这项工作中,我们希望评估基因3'末端的DNA序列在转录终止时促进yFACT解离中的贡献。
    结果:我们产生了组成型表达酵母基因PMA1的十四个不同等位基因,每个等位基因在其3'末端缺乏不同的DNA片段,并评估了它们对yFACT组件Spt16占有率的影响。尽管这些等位基因中的大多数都没有赋予Spt16占有率缺陷,一个确实导致了基因3端的Spt16结合的适度增加。有趣的是,相同的等位基因还导致RNA聚合酶II(PolII)的少量保留,并改变了该基因同一区域的核小体占用。这些结果表明,基因3'末端的特定DNA序列可以在促进yFACT和PolII与基因的有效解离中发挥作用,并且还可以有助于适当的染色质结构。
    OBJECTIVE: In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3\' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3\' end of genes in promoting yFACT dissociation upon transcription termination.
    RESULTS: We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3\' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene\'s 3\' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3\' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞周期依赖性激酶7(Cdk7)是细胞周期和转录调节所必需的,因为它既是CDK激活激酶(CAK)又是转录因子TFIIH的一部分。Cdk7通过与CyclinH和Mat1缔合形成活性复合物,并受激活片段(T环)中的两个磷酸化调节:在T170处的典型激活修饰和在S164处的另一个。在这里,我们报告了包含两个T环磷酸化的人Cdk7/CyclinH/Mat1复合物的晶体结构。而pT170坐标在其他CDK中保守的基本残基,pS164使三元Cdk7复合物特有的精氨酸网络成核,涉及所有三个子单元。我们确定了激酶活性和底物识别对单个磷酸化的差异依赖性。CAK功能不受T环磷酸化的影响,而对非CDK底物的活性通过T170磷酸化增加了几倍。此外,双T环磷酸化刺激RNA聚合酶II(RNAPII)羧基末端结构域(CTD)和SPT5羧基末端重复(CTR)区域的多位点磷酸化。在人类细胞中,Cdk7活化是一个两步过程,其中S164磷酸化之前,Mayprime,T170磷酸化。因此,双T环磷酸化可以通过多种机制调节Cdk7,pS164支持三方复合物的形成,并可能影响持续性,而pT170增强对关键转录底物的活性。
    Cyclin-dependent kinase 7 (Cdk7) is required in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of transcription factor TFIIH. Cdk7 forms active complexes by associating with Cyclin H and Mat1, and is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates basic residues conserved in other CDKs, pS164 nucleates an arginine network unique to the ternary Cdk7 complex, involving all three subunits. We identify differential dependencies of kinase activity and substrate recognition on the individual phosphorylations. CAK function is unaffected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by T170 phosphorylation. Moreover, dual T-loop phosphorylation stimulates multisite phosphorylation of the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7 activation is a two-step process wherein S164 phosphorylation precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing processivity, while pT170 enhances activity towards key transcriptional substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号