RNA, Transfer, Amino Acyl

RNA,转让,氨基酰基
  • 文章类型: Journal Article
    亚硝酸钠(SN),一种流行的食品防腐剂,已知暴露后会沉淀肝毒性。本研究阐明了玉米寡肽(COP)和维生素E(VE)对SN诱导的犬肝细胞肝损伤的保护作用。犬肝细胞进行SN诱导肝毒性,然后用COP和VE治疗。评估包括细胞活力测定,氧化应激标志物,凋亡,和炎性细胞因子。此外,进行转录组和代谢组学分析以描绘潜在的分子机制。结果表明,COP和VE显著改善了SN诱导的细胞毒性,氧化应激,和凋亡。细胞活力恢复证明了这一点,增强抗氧化酶活性,减少细胞质酶渗漏,丙二醛和炎性细胞因子水平降低,COP表现出优越的疗效。RNA测序显示COP处理抑制了SN激活的氨酰-tRNA生物合成途径和TGF-β/NF-κB信号通路,从而减轻氨基酸消耗,凋亡,和炎症。此外,COP处理上调与蛋白质折叠相关的基因,胆汁酸合成,DNA修复代谢组学分析证实了这些结果,表明COP恢复了氨基酸水平并增强了胆汁酸代谢,减轻SN诱导的代谢破坏。这些发现为COP的保护机制提供了重要的见解,强调了其在治疗肝损伤中的未来应用。
    Sodium nitrite (SN), a prevalent food preservative, is known to precipitate hepatotoxicity upon exposure. This study elucidates the hepatoprotective effects of corn oligopeptide (COP) and vitamin E (VE) against SN-induced hepatic injury in canine hepatocytes. Canine liver cells were subjected to SN to induce hepatotoxicity, followed by treatment with COP and VE. Evaluations included assays for cell viability, oxidative stress markers, apoptosis, and inflammatory cytokines. Additionally, transcriptomic and metabolomic analyses were performed to delineate the underlying molecular mechanisms. The findings demonstrated that COP and VE significantly ameliorated SN-induced cytotoxicity, oxidative stress, and apoptosis. It was evidenced by restored cell viability, enhanced antioxidant enzyme activity, reduced cytoplasmic enzyme leakage, and decreased levels of malondialdehyde and inflammatory cytokines, with COP showing superior efficacy. The RNA sequencing revealed that COP treatment suppressed the SN-activated aminoacyl-tRNA biosynthesis pathway and TGF-β/NF-κB signaling pathways, thereby mitigating amino acid depletion, apoptosis, and inflammation. Moreover, COP treatment upregulated genes associated with protein folding, bile acid synthesis, and DNA repair. Metabolomic analysis corroborated these results, showing that COP restored amino acid levels and enhanced bile acid metabolism, alleviating SN-induced metabolic disruptions. These findings offered significant insights into the protective mechanisms of COP underscoring its prospective application in treating liver injuries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    翻译保真度关键依赖于正确的氨酰基-tRNA供应。反式编辑因子AlaX主要水解Ser-tRNAAla,作为丙氨酰-tRNA合成酶(AlaRS)的第三个筛子。尽管对细菌和古细菌进行了广泛的研究,哺乳动物的反式编辑机制在很大程度上仍然未知。这里,我们证明人类AlaX(hAlaX),它只分布在细胞质中,是具有严格Ser特异性的主动反式编辑因子。体外,hAlaX和酵母AlaX(ScAlaX)都能够水解几乎所有Ser错位的细胞质和线粒体tRNA;以及稳健编辑的同源Ser带电细胞质和线粒体tRNASers。体内或基于细胞的研究表明,ScAlaX或hAlaX的丢失容易诱导Ala和Thr-to-Ser错误掺入。hAlaX的过表达阻碍了连续Ser密码子的解码效率,暗示其在Ser密码子解码中的调节作用。值得注意的是,具有ScAlaX缺失的酵母细胞对翻译抑制剂处理的反应不同,随着遗传霉素抗性的增加,但对环己酰亚胺敏感,两者都是由具有编辑能力的ScAlaX拯救的,丙氨酰-或苏酰基-tRNA合成酶。总之,我们的结果证明了之前未描述的真核AlaXs的编辑特性,它提供了多个检查点来保持基因解码的速度和保真度。
    Translational fidelity relies critically on correct aminoacyl-tRNA supply. The trans-editing factor AlaX predominantly hydrolyzes Ser-tRNAAla, functioning as a third sieve of alanyl-tRNA synthetase (AlaRS). Despite extensive studies in bacteria and archaea, the mechanism of trans-editing in mammals remains largely unknown. Here, we show that human AlaX (hAlaX), which is exclusively distributed in the cytoplasm, is an active trans-editing factor with strict Ser-specificity. In vitro, both hAlaX and yeast AlaX (ScAlaX) were capable of hydrolyzing nearly all Ser-mischarged cytoplasmic and mitochondrial tRNAs; and robustly edited cognate Ser-charged cytoplasmic and mitochondrial tRNASers. In vivo or cell-based studies revealed that loss of ScAlaX or hAlaX readily induced Ala- and Thr-to-Ser misincorporation. Overexpression of hAlaX impeded the decoding efficiency of consecutive Ser codons, implying its regulatory role in Ser codon decoding. Remarkably, yeast cells with ScAlaX deletion responded differently to translation inhibitor treatment, with a gain in geneticin resistance, but sensitivity to cycloheximide, both of which were rescued by editing-capable ScAlaX, alanyl- or threonyl-tRNA synthetase. Altogether, our results demonstrated the previously undescribed editing peculiarities of eukaryotic AlaXs, which provide multiple checkpoints to maintain the speed and fidelity of genetic decoding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铁凋亡是由脂质氢过氧化物的铁依赖性积累诱导的调节性细胞死亡的一种形式。硒蛋白谷胱甘肽过氧化物酶4(GPX4)通过催化硒代半胱氨酸(Sec)残基将脂质氢过氧化物解毒来抑制铁凋亡。Sec,基因编码的第21个氨基酸,从活性硒供体在其同源tRNA[Ser]Sec上生物合成。人们认为,由于载体蛋白的高反应性和非常低的浓度,必须通过载体蛋白“安全地”和“有效地”递送细胞内硒。这里,我们确定了过氧化物酶6(PRDX6)是一种新型的硒蛋白合成因子。PRDX6的缺失降低硒蛋白的表达并通过GPX4的减少诱导铁凋亡。机械上,PRDX6通过在硒代半胱氨酸-tRNA[Ser]Sec合成机制中的蛋白质之间转移硒来提高细胞内硒利用的效率,导致硒代半胱氨酸-tRNA[Ser]Sec的有效合成。这些发现突出了先前未识别的硒代谢系统,并提供了对铁死亡的新见解。
    Ferroptosis is a form of regulated cell death induced by iron-dependent accumulation of lipid hydroperoxides. Selenoprotein glutathione peroxidase 4 (GPX4) suppresses ferroptosis by detoxifying lipid hydroperoxides via a catalytic selenocysteine (Sec) residue. Sec, the genetically encoded 21st amino acid, is biosynthesized from a reactive selenium donor on its cognate tRNA[Ser]Sec. It is thought that intracellular selenium must be delivered \'safely\' and \'efficiently\' by a carrier protein owing to its high reactivity and very low concentrations. Here, we identified peroxiredoxin 6 (PRDX6) as a novel selenoprotein synthesis factor. Loss of PRDX6 decreases the expression of selenoproteins and induces ferroptosis via a reduction in GPX4. Mechanistically, PRDX6 increases the efficiency of intracellular selenium utilization by transferring selenium between proteins within the selenocysteyl-tRNA[Ser]Sec synthesis machinery, leading to efficient synthesis of selenocysteyl-tRNA[Ser]Sec. These findings highlight previously unidentified selenium metabolic systems and provide new insights into ferroptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在蛋白质合成过程中被困在mRNA上的核糖体需要被拯救以使细胞存活。最普遍的细菌核糖体拯救途径是由tmRNA和SmpB介导的转译。转译的遗传失活可能是致命的,除非核糖体被ArfA或ArfB替代拯救因子或核糖体相关质量控制(RQC)系统拯救,在枯草芽孢杆菌中涉及MutS2,RqcH,RqcP和Pth。在无反式翻译能力的枯草芽孢杆菌菌株中使用转座子测序,我们将表征不佳的含有S4结构域的蛋白质YlmH鉴定为新的潜在RQC因子。Cryo-EM结构显示YlmH结合肽基-tRNA-50S复合物的位置类似于含有S4结构域的蛋白质RqcP,而且,类似于RqcP,YlmH可以与RqcH共存。始终如一,我们表明YlmH可以通过促进将聚丙氨酸尾添加到截短的新生多肽中来承担RqcP在RQC中的作用。而在枯草芽孢杆菌中,YlmH的功能与RqcP是多余的,我们的分类学分析表明,在多个细菌门中,RqcP是不存在的,虽然存在YlmH和RqcH,表明在这些物种中,YlmH在RQC中起着核心作用。
    Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在假设的RNA世界中,核酶可以作为现代氨酰基-tRNA合成酶(ARSs)给tRNA充电,从而产生了肽的合成以及原始翻译装置的进化。我们以前报道过一种T-boxzyme,Tx2.1,它在柔性体外翻译(FIT)系统中选择性地将起始tRNA与N-生物素基-苯丙氨酸(BioPhe)原位充电,以产生BioPhe起始肽。这里,我们进行了具有延伸能力的T盒酶(elT盒酶)的体外选择,使用对叠氮基-1-苯丙氨酸(PheAZ)作为酰基供体。我们实施了一种新的策略来富集在3'端选择性自氨基酰化的elT-羧酶-tRNA缀合物。其中一个,elT32可以响应于其同源反密码子以反式将PheAZ充电到tRNA上。elT32的进一步进化导致具有增强的氨基酰化活性的elT49。我们已经证明了含有PheAZ的肽在elT-羧酶整合的FIT系统中的翻译,揭示了elT盒酶能够响应定制翻译系统的同源反密码子原位产生PheAZ-tRNA。这项研究,与Tx2.1一起,说明了一系列核酶可以监督氨基酰化并与原始的基于RNA的翻译系统共同进化的情况。
    In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3\'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    科学观察中的异常值经常被忽略,并且大多未被报告。然而,呈现它们总是有益的,因为它们可以反映可能开辟新途径的实际异常情况。这里,我们描述了上述两个例子,它们来自蛋白质生物合成领域核酸研究的两个先驱的实验室,保罗·伯格和唐纳德·克罗瑟斯。他们在鉴定D-氨酰基-tRNA脱酰基酶(DTD)和“鉴别器假说”方面的工作,分别,远远领先于他们的时代,部分违反了当时的一般范式。在上述两项工作中,最小和唯一的非手性氨基酸被证明是一个异常值,因为DTD可以弱作用于带甘氨酸的tRNA,具有独特的“尿嘧啶”鉴别器碱基。甘氨酸的这种特殊性质在近半个世纪以来一直是个谜。到本世纪初,有了大量关于这个问题的可用信息,我们对蛋白质生物合成过程中的“手性校对”机制的研究偶然地促使我们重新审视这些发现。这里,我们描述了我们如何发现它们之间意想不到的联系,这对不同真核生物形式的进化有影响。
    Outliers in scientific observations are often ignored and mostly remain unreported. However, presenting them is always beneficial since they could reflect the actual anomalies that might open new avenues. Here, we describe two examples of the above that came out of the laboratories of two of the pioneers of nucleic acid research in the area of protein biosynthesis, Paul Berg and Donald Crothers. Their work on the identification of D-aminoacyl-tRNA deacylase (DTD) and \'Discriminator hypothesis\', respectively, were hugely ahead of their time and were partly against the general paradigm at that time. In both of the above works, the smallest and the only achiral amino acid turned out to be an outlier as DTD can act weakly on glycine charged tRNAs with a unique discriminator base of \'Uracil\'. This peculiar nature of glycine remained an enigma for nearly half a century. With a load of available information on the subject by the turn of the century, our work on \'chiral proofreading\' mechanisms during protein biosynthesis serendipitously led us to revisit these findings. Here, we describe how we uncovered an unexpected connection between them that has implications for evolution of different eukaryotic life forms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    酰胺蛋白氨基酸,天冬酰胺和谷氨酰胺,是所有已知生命在翻译中使用的二十种氨基酸中的两种。天冬酰胺和谷氨酰胺的氨酰tRNA合成酶,天冬酰胺酰tRNA合成酶和谷氨酰胺酰tRNA合成酶,在现代生物的最后一个普遍的共同祖先分裂之后进化。在分裂之前,life使用两步间接途径在其同源tRNA上合成天冬酰胺和谷氨酰胺,以形成用于翻译的氨酰基-tRNA。这些两步途径保留在生命和真核细胞的许多细菌和古细菌域中。间接途径使用非区别性氨酰基-tRNA合成酶(非区别性天冬氨酰-tRNA合成酶和非区别性谷氨酰-tRNA合成酶)来对tRNA进行氨基酰化。然后通过tRNA依赖性酰胺基转移酶(GatCAB和GatDE)将形成的错氨酰化的tRNA转酰胺化为用于蛋白质合成的酰胺氨酰-tRNA。所涉及的酶和tRNA组装成称为转酰胺体的复合物以帮助维持翻译保真度。这些途径已经进化到满足不同生物的不同细胞需求,导致显著的变化。在某些细菌中,间接途径可以通过降低蛋白质合成的保真度来提供适应细胞应激的手段。这些间接途径的保留与谱系中天冬酰胺酰-tRNA合成酶和谷氨酰胺酰tRNA合成酶的获得有关,可能涉及谷氨酰胺和天冬酰胺在翻译之外的竞争用途的复杂相互作用。充满活力的成本,酶和tRNA之间的协同进化,以及参与压力反应,等待进一步调查。
    The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    醛类,作为碳代谢不可或缺的一部分,能源生产,和信号通路,在植物生理学中根深蒂固。陆地植物已经开发出复杂的代谢途径,其中涉及反应性醛的产生及其解毒作用,以在恶劣的陆地环境中生存。这里,我们发现生理上产生的醛,即,甲醛和甲基乙二醛除了乙醛,产生与氨酰基-tRNA的加合物,蛋白质合成的底物。植物的独特之处在于拥有两种不同的手性校对系统,细菌和古细菌来源的D-氨酰基-tRNA脱酰酶1(DTD1)和DTD2,分别。广泛的生化分析表明,只有古细菌DTD2可以去除tRNA上稳定的D-氨酰基加合物,从而保护古细菌和植物免受这些系统产生的醛的侵害。使用拟南芥作为模型系统,我们已经表明,DTD2基因的丢失使植物对这些有毒醛敏感,因为它们在D-氨酰基-tRNA上产生稳定的烷基修饰,仅由DTD2回收。生物信息学分析确定了陆地植物祖先中醛代谢库的扩展,这与古细菌DTD2的募集密切相关。最后,我们证明,DTD2的过表达比野生型拟南芥提供更好的醛保护,突出了其作为多醛解毒剂的作用,可以作为转基因作物开发策略进行探索。
    Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    疟疾对人类健康构成巨大威胁。随着对目前使用的药物的耐药性不断增加,迫切需要具有新作用机制的突破性化合物。这里,我们探索以嘧啶为基础的磺胺类药物作为一种新的低分子量抑制剂,具有类似药物的物理参数和可合成的支架。我们展示了样本,OSM-S-106对寄生虫培养物具有强大的活性,低哺乳动物细胞毒性和低抗性发展倾向。以恶性疟原虫胞质天冬酰胺-tRNA合成酶(PfAsnRS)为靶标,使用缓慢上升方法进行抗性的体外进化,与我们的发现一致,即OSM-S-106抑制蛋白质翻译并激活氨基酸饥饿反应。靶向质谱证实OSM-S-106是前抑制剂,并且PfAsnRS的抑制通过酶介导的Asn-OSM-S-106加合物的产生发生。人AsnRS对这种反应劫持机制的敏感性要小得多。人AsnRS与抑制剂加合物的复合物的X射线晶体学研究以及前抑制剂与Asn-tRNA结合的PfAsnRS模型的对接提供了对结构-活性关系和选择性机制的见解。
    Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有几种方法可用于可视化和评估蛋白质生物合成的基本步骤的动力学和效率。然而,这些方法都有其自身的局限性。这里,我们提出了一部小说,简单方便的工具,用于逐步监测由BODIPY-Met-tRNA启动的体外翻译。合成和释放很短,1至7个氨基酸,BODIPY标记的肽,可以使用尿素-聚丙烯酰胺凝胶电泳进行监测。非常短的BODIPY标记的寡肽可以通过这种方式解决,与广泛使用的Tris-tricine凝胶电泳相反,其适合于分离大于1kDa的肽。本手稿中描述的方法允许人们监控翻译启动的步骤,肽转移,易位,和终止以及它们在前所未有的单一氨基酸分辨率下的抑制作用。
    Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号