RLR signaling

RLR 信令
  • 文章类型: Journal Article
    目的:作为主要病原体,神经坏死病毒(NNV)感染全球120多种鱼类,对幼虫和幼鱼具有毒性,阻碍了鱼苗产业的发展。了解病毒与宿主的相互作用和潜在机制是鱼类病毒研究中一个重要但大部分未知的问题。这里,使用通道cat鱼卵巢和黑头min鱼细胞作为先天免疫信号研究的模型,我们发现NNV编码的ProA通过维甲酸诱导基因I(RIG-I)样受体(RLR)途径激活干扰素信号,该途径仍被野生型NNV感染抑制.这一发现对于理解NNV蛋白的功能和不同细胞的免疫反应具有重要意义。首先,RIG-I是抗NNV先天免疫的关键节点。第二,RLR信号的反应强度决定了NNV增殖的程度。这项研究扩展了我们对NNV编码蛋白影响的信号通路概述的知识,并强调了控制水生病毒的潜在方向。
    OBJECTIVE: As a major pathogen, nervous necrosis virus (NNV) infects more than 120 fish species worldwide and is virulent to larvae and juvenile fish, hampering the development of the fish fry industry. Understanding virus-host interaction and underlying mechanisms is an important but largely unknown issue in fish virus studies. Here, using channel catfish ovary and fathead minnow cells as models for the study of innate immunity signaling, we found that NNV-encoded ProA activated interferon signaling via the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) pathway which was still suppressed by the infection of wild-type NNV. This finding has important implications for the comprehension of NNV protein function and the immune response from different cells. First, RIG-I is the key node for anti-NNV innate immunity. Second, the response intensity of RLR signaling determines the degree of NNV proliferation. This study expands our knowledge regarding the overview of signal pathways affected by NNV-encoded protein and also highlights potential directions for the control of aquatic viruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:干扰素刺激基因(ISGs)响应于由病毒感染引起的干扰素表达而被诱导。这些ISG的作用在不同的细胞或器官中可以是可变的。我们的研究强调了ISG的这种细胞特异性作用,Ddx3,以细胞特异性方式调节干扰素诱导(PACT)和干扰素信号传导(STAT1)必需的mRNA的翻译。我们的研究还强调了PACT在RNA病毒诱导的RLR信号传导中的作用。我们的研究描述了Ddx3如何以间接方式调节先天免疫信号通路。ISGs的这种细胞特异性行为有助于我们更好地理解病毒的发病机理,并突出病毒嗜性和先天免疫反应的复杂性。
    OBJECTIVE: Interferon-stimulated genes (ISGs) are induced in response to interferon expression due to viral infections. Role of these ISGs can be variable in different cells or organs. Our study highlights such cell-specific role of an ISG, Ddx3, which regulates the translation of mRNAs essential for interferon induction (PACT) and interferon signaling (STAT1) in a cell-specific manner. Our study also highlights the role of PACT in RNA virus-induced RLR signaling. Our study depicts how Ddx3 regulates innate immune signaling pathways in an indirect manner. Such cell-specific behavior of ISGs helps us to better understand viral pathogenesis and highlights the complexities of viral tropism and innate immune responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    应激颗粒(SGs)构成在I型干扰素应答中起关键作用的信号传导中枢。这里,我们报道,生长停滞和DNA损伤诱导型β(Gadd45β)通过在RNA病毒感染时靶向G3BP,作为SG介导的干扰素信号传导的正调节因子.Gadd45β缺乏在体外显著损害SG形成和SG介导的干扰素信号的激活。Gadd45β基因敲除小鼠对RNA病毒感染高度敏感,它们产生干扰素和细胞因子的能力严重受损。具体来说,Gadd45β与G3BP的RNA结合域相互作用,通过溶解其自抑制性静电分子内相互作用导致G3BP1的构象扩展。Gadd45β的酸性环1-和RNA结合特性显着增加了G3BP1-Gadd45β复合物的构象扩增和RNA结合亲和力,从而促进SGs的组装。这些发现表明Gadd45β作为G3BP1介导的SG形成的组分和关键调节因子的作用。这促进了RLR介导的干扰素信号传导。
    Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45β) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45β deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45β knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45β interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45β markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45β complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45β as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    视黄酸诱导型基因I(RIG-I)是胞质病毒RNA受体。病毒感染后,蛋白质识别然后募集衔接蛋白线粒体抗病毒信号(MAVS)蛋白,启动干扰素和促炎细胞因子的产生以建立抗病毒状态。在本研究中,我们鉴定了锌指蛋白205(ZNF205),它与RIG-I相关,并促进仙台病毒(SeV)诱导的抗病毒先天免疫反应。ZNF205的过表达促进干扰素-β(IFN-β)的引入,而ZNF205缺乏限制了其引入。机械上,ZNF205的C端锌指结构域与RIG-I的N端串联caspase募集结构域(CARD)相互作用;这种相互作用显着促进RIG-I的K63泛素连接的聚泛素化,这对RIG-I激活至关重要.因此,我们的结果表明ZNF205是RIG-I介导的先天抗病毒免疫信号通路的正调节因子.
    Retinoic acid-inducible gene I (RIG-I) is a cytosolic viral RNA receptor. Upon viral infection, the protein recognizes and then recruits adapter protein mitochondrial antiviral signaling (MAVS) protein, initiating the production of interferons and proinflammatory cytokines to establish an antiviral state. In the present study, we identify zinc finger protein 205 (ZNF205) which associates with RIG-I and promotes the Sendai virus (SeV)-induced antiviral innate immune response. Overexpression of ZNF205 facilitates interferon-beta (IFN-β) introduction, whereas ZNF205 deficiency restricts its introduction. Mechanistically, the C-terminal zinc finger domain of ZNF205 interacts with the N-terminal tandem caspase recruitment domains (CARDs) of RIG-I; this interaction markedly promotes K63 ubiquitin-linked polyubiquitination of RIG-I, which is crucial for RIG-I activation. Thus, our results demonstrate that ZNF205 is a positive regulator of the RIG-I-mediated innate antiviral immune signaling pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体抗病毒信号(MAVS)蛋白是类维生素A酸诱导基因I样受体(RLR)信号通路中的核心信号接头,可募集下游信号因子,最终导致Ⅰ型干扰素的激活。然而,通过操纵MAVS调节RLR信号通路的机制尚不完全清楚.先前的研究表明,三方基序28(TRIM28)通过在转录水平上抑制免疫相关基因的表达参与调节先天免疫信号通路。在这项研究中,我们将TRIM28以MAVS依赖性方式表征为RLR信号通路的负调节因子.TRIM28过表达抑制MAVS诱导的Ⅰ型干扰素和促炎细胞因子的产生,而击倒TRIM28则产生相反的效果。机械上,TRIM28靶向MAVS通过K48连接的聚泛素化进行蛋白酶体介导的降解。TRIM28的RING结构域,尤其是65和68位的半胱氨酸残基,对于TRIM28对MAVS介导的RLR信号传导的抑制作用至关重要,而TRIM28的每个C端结构域都有助于其与MAVS的相互作用。进一步的研究表明,TRIM28将泛素链转移到MAVS的K7,K10,K371,K420和K500残基上。一起,我们的结果揭示了涉及TRIM28微调先天免疫反应的一个以前未表征的机制,并提供了对MAVS调节机制的新见解,这有助于了解维持免疫稳态的分子机制。
    Mitochondrial antiviral signaling (MAVS) protein is a core signaling adapter in the retinoid acid-inducible gene-I-like receptor (RLR) signaling pathway that recruits downstream signaling factors, ultimately leading to the activation of type Ⅰ interferons. However, the mechanisms that modulate the RLR signaling pathway by manipulating MAVS are not fully understood. Previous studies suggested that tripartite motif 28 (TRIM28) participates in regulating innate immune signaling pathways by inhibiting the expression of immune-related genes at the transcriptional level. In this study, we characterized TRIM28 as a negative regulator of the RLR signaling pathway in a MAVS-dependent manner. Overexpression of TRIM28 inhibited the MAVS-induced production of type Ⅰ interferons and proinflammatory cytokines, while knocking down TRIM28 exerted the opposite effect. Mechanistically, TRIM28 targeted MAVS for proteasome-mediated degradation via K48-linked polyubiquitination. The RING domain of TRIM28, especially the cysteine residues at positions 65 and 68, was critical for the suppressive effect of TRIM28 on MAVS-mediated RLR signaling, while each of the C-terminal domains of TRIM28 contributed to its interaction with MAVS. Further investigation revealed that TRIM28 transferred ubiquitin chains to the K7, K10, K371, K420, and K500 residues of MAVS. Together, our results reveal a previously uncharacterized mechanism involving TRIM28 in fine-tuning innate immune responses and provide new insights into the mechanisms by which MAVS is regulated, which contribute to the understanding of the molecular mechanisms underlying immune homeostasis maintenance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:载体传播的黄病毒,包括蜱传脑炎病毒(TBEV),寨卡病毒(ZIKV),西尼罗河病毒(WNV)黄热病毒(YFV),登革热病毒(DENV),和日本脑炎病毒(JEV),对全球公共卫生构成越来越大的威胁,并进化出复杂的机制来克服宿主抗病毒先天性免疫。然而,黄病毒结构蛋白逃避宿主免疫反应的潜在机制仍然难以捉摸。
    结果:我们发现TBEV结构蛋白,前膜(prM)蛋白,可以抑制I型干扰素(IFN-I)的产生。机械上,TBEVprM与MDA5和MAVS相互作用,干扰MDA5-MAVS复合体的形成,从而阻碍IRF3的核易位和二聚化以抑制RLR抗病毒信号传导。ZIKV和WNVprM也被证明与MDA5和MAVS相互作用,而登革热病毒血清型2(DENV2)和YFVprM仅与MDA5或MAVS相关,以抑制IFN-I的产生。相比之下,JEVprM不能抑制IFN-I的产生。TBEV和ZIKVprM的过表达显著促进了TBEV和仙台病毒的复制。
    结论:我们的发现揭示了黄病毒prM的免疫逃避机制,这可能有助于理解黄病毒的致病性,治疗干预和疫苗开发。
    BACKGROUND: Vector-borne flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), pose a growing threat to public health worldwide, and have evolved complex mechanisms to overcome host antiviral innate immunity. However, the underlying mechanisms of flavivirus structural proteins to evade host immune response remain elusive.
    RESULTS: We showed that TBEV structural protein, pre-membrane (prM) protein, could inhibit type I interferon (IFN-I) production. Mechanically, TBEV prM interacted with both MDA5 and MAVS and interfered with the formation of MDA5-MAVS complex, thereby impeding the nuclear translocation and dimerization of IRF3 to inhibit RLR antiviral signaling. ZIKV and WNV prM was also demonstrated to interact with both MDA5 and MAVS, while dengue virus serotype 2 (DENV2) and YFV prM associated only with MDA5 or MAVS to suppress IFN-I production. In contrast, JEV prM could not suppress IFN-I production. Overexpression of TBEV and ZIKV prM significantly promoted the replication of TBEV and Sendai virus.
    CONCLUSIONS: Our findings reveal the immune evasion mechanisms of flavivirus prM, which may contribute to understanding flavivirus pathogenicity, therapeutic intervention and vaccine development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新出现的严重急性呼吸综合征(SARS)冠状病毒-2(SARS-CoV-2)可导致干扰素(IFN)反应失调,从而导致疾病严重程度。SARS-CoV-2的木瓜蛋白酶样蛋白酶(SCoV2-PLpro)先前已被报道减弱IFN应答,但是潜在的机制还没有完全理解。在这项研究中,我们发现SCoV2-PLpro能有效抑制仙台病毒诱导的IFN产生和信号传导以及RIG-I样受体(RLR)信号通路成分,包括RIG-I,MAVS,TBK1、TRAF3、TRAF6和IRF3。SCoV2-PLpro表现出与SARS-CoVPLpro不同的特异性和效率,前者对RIG-I和TRAF3介导的IFN应答具有较大的抑制作用,但对MAVS介导的IFN应答具有较弱的抑制作用。此外,我们发现SCoV2-PLpro显著降低RIG-I的K63泛素化,MAVS,TBK1、TRAF3、TRAF6、IRF3和K48-IκBα的泛素化,这是已知的先天免疫信号转导的关键。SCoV2-PLpro的去泛素化(DUB)活性需要催化残基半胱氨酸111(C111)而不是UBL结构域。值得注意的是,通过利用DUB缺陷的C111突变体,我们证明SCoV2-PLpro通过去泛素化依赖性和非依赖性机制靶向RLR信号通路调节因子,RIG-I和TBK1的抑制活性与DUB功能相关,而对MAVS的拮抗作用,TRAF3、TRAF6和IRF3不依赖于DUB活性。总的来说,我们的结果表明,SCoV2-PLpro从SCoV1-PLpro进化出不同的IFN拮抗活性,它通过各种机制靶向多个关键的RLR信号通路成分,提供对SARS-CoV-2发病机制的见解,并为开发COVID-19的抗病毒治疗提供线索。
    The newly emerged severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) can result in dysregulated interferon (IFN) responses that contribute to disease severity. The papain-like protease of SARS-CoV-2 (SCoV2-PLpro) has been previously reported to attenuate IFN responses, but the underlying mechanism is not fully understood. In this study, we found that SCoV2-PLpro potently suppressed IFN production and signaling induced by Sendai virus as well as RIG-I-like receptor (RLR) signaling pathway components, including RIG-I, MAVS, TBK1, TRAF3, TRAF6, and IRF3. SCoV2-PLpro exhibited different specificity and efficiency than SARS-CoV PLpro, with the former exerting a greater inhibitory effect on the RIG-I- and TRAF3-mediated IFN response but a weaker effect on the MAVS-mediated IFN response. Furthermore, we showed that SCoV2-PLpro significantly reduced K63-ubiquitination of RIG-I, MAVS, TBK1, TRAF3, TRAF6, and IRF3 and K48-ubiquitination of IκBα, which are known critical for the innate immune signal transduction. The deubiquitinating (DUB) activity of SCoV2-PLpro required a catalytic residue cysteine 111 (C111) but not the UBL domain. Notably, by utilizing the DUB-defective C111 mutant, we demonstrated that SCoV2-PLpro targeted RLR signaling pathway regulators via deubiquitination-dependent and -independent mechanisms, with the inhibitory activities of RIG-I and TBK1 correlating with DUB function, whereas the antagonism effects on MAVS, TRAF3, TRAF6, and IRF3 independent on DUB activity. Overall, our results reveal that SCoV2-PLpro evolves differential IFN antagonism activity from SCoV1-PLpro and it targets multiple key RLR signaling pathway components via various mechanisms, providing insights into SARS-CoV-2 pathogenesis and clues for developing antiviral therapies for COVID-19.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黄病毒科的成员正在对全世界的人类健康构成重大威胁。许多黄病毒能够在人中诱导严重的炎症。黄病毒科非结构蛋白,除了它们在病毒复制中的典型作用,具有强烈影响抗病毒先天免疫的非规范功能。在这些功能中,I型IFN的拮抗作用是研究最多的;同时,关于它们在其他先天反应途径中的作用,积累了更多的数据。这篇综述系统化了有关黄病毒科非结构蛋白在引发炎症的分子机制中的作用的最新数据。强调它们与TLR和RLR的相互作用,干扰NF-κB和cGAS-STING信号,和炎症体的激活。
    Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA结合蛋白RIG-I是抗病毒先天性免疫应答的关键引发剂。介导RIG-I下游抗病毒应答的信号传导通过衔接蛋白MAVS转导,并导致I型和III型干扰素(IFN)的诱导。这种信号转导发生在内质网(ER)-线粒体接触位点,RIG-I和其他信号蛋白在其激活后被招募。RIG-I信号传导被高度调节以防止该途径的异常激活和IFN的失调诱导。以前,我们鉴定了UFL1,称为ufmylation的泛素样修饰物缀合系统的E3连接酶,作为响应RIG-I激活而募集到ER-线粒体接触位点膜的蛋白质之一。这里,我们证明了UFL1,以及ufmylation的过程,促进响应于RIG-I激活的IFN诱导。我们发现RNA病毒感染后,UFL1被募集到膜靶向蛋白14-3-3ε,然后该复合物被募集到激活的RIG-I以促进下游先天免疫信号传导。重要的是,我们发现14-3-3ε在RIG-I激活后UFM1缀合增加。此外,细胞ufmylation的丧失阻止了14-3-3ε与RIG-I的相互作用,它消除了RIG-I与MAVS的相互作用,从而消除了诱导IFN的下游信号转导。我们的结果将ufmylation定义为RIG-I信号传导途径的完整调节成分,并作为IFN诱导的翻译后控制。
    The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)–mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER–mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14–3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14–3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14–3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组蛋白H2A是以核小体形式紧密结合的核分子。我们先前的研究已经证明了猪H2A变体对革兰氏阴性菌毕西氏菌和革兰氏阳性菌无乳链球菌的抗菌性能。在这项研究中,我们展示了猪H2A在负向调节RLR信号通路和宿主针对鲤鱼春季病毒血症(SVCV)感染的先天免疫应答中的功能和机制。SVCV感染在感染早期显著抑制组蛋白H2A的表达,但在感染后期如48和72hpi诱导组蛋白H2A的表达。在正常生理条件下,组蛋白H2A是核定位的。然而,SVCV感染促进组蛋白H2A从细胞核迁移到细胞质。体内研究表明,组蛋白H2A过表达导致SVCV基因表达增加,存活率降低。组蛋白H2A的过表达也显著损害了RLR抗病毒信号通路中涉及的那些基因的表达水平。此外,组蛋白H2A靶向TBK1和IRF3,通过溶酶体途径促进其蛋白质降解,并损害TBK1-IRF3功能复合物的形成。重要的是,组蛋白H2A完全消除了TBK1介导的抗病毒活性,并极大地损害了IRF3,尤其是核IRF3的蛋白表达。进一步分析表明,抑制组蛋白H2A核/细胞质运输可以减轻TBK1和IRF3的蛋白质降解,并阻断组蛋白H2A对SVCV感染的负调控。总的来说,我们的结果表明,组蛋白H2A核/细胞质运输对于响应SVCV感染的RLR信号通路和抗病毒免疫应答的负调控至关重要.
    Histone H2A is a nuclear molecule tightly associated in the form of the nucleosome. Our previous studies have demonstrated the antibacterial property of piscine H2A variants against gram-negative bacteria Edwardsiella piscicida and Gram-positive bacteria Streptococcus agalactiae. In this study, we show the function and mechanism of piscine H2A in the negative regulation of RLR signaling pathway and host innate immune response against spring viremia of carp virus (SVCV) infection. SVCV infection significantly inhibits the expression of histone H2A during an early stage of infection, but induces the expression of histone H2A during the late stage of infection such as at 48 and 72 hpi. Under normal physiological conditions, histone H2A is nuclear-localized. However, SVCV infection promotes the migration of histone H2A from the nucleus to the cytoplasm. The in vivo studies revealed that histone H2A overexpression led to the increased expression of SVCV gene and decreased survival rate. The overexpression of histone H2A also significantly impaired the expression levels of those genes involved in RLR antiviral signaling pathway. Furthermore, histone H2A targeted TBK1 and IRF3 to promote their protein degradation via the lysosomal pathway and impair the formation of TBK1-IRF3 functional complex. Importantly, histone H2A completely abolished TBK1-mediated antiviral activity and enormously impaired the protein expression of IRF3, especially nuclear IRF3. Further analysis demonstrated that the inhibition of histone H2A nuclear/cytoplasmic trafficking could relieve the protein degradation of TBK1 and IRF3, and blocked the negative regulation of histone H2A on the SVCV infection. Collectively, our results suggest that histone H2A nuclear/cytoplasmic trafficking is essential for negative regulation of RLR signaling pathway and antiviral immune response in response to SVCV infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号