RGC protection

  • 文章类型: Journal Article
    过高的谷氨酸活性水平可能会损害和杀死神经元。谷氨酸兴奋毒性被认为在许多CNS和视网膜疾病中起关键作用。因此,谷氨酸兴奋性毒性已被用作研究神经元疾病的模型。免疫蛋白,如主要组织相容性复合体(MHC)I类分子及其受体,在许多神经元疾病中发挥重要作用,而T细胞受体(TCR)是MHCI的主要受体。我们之前证明了TCR的一个关键组成部分,CD3ζ,由小鼠视网膜神经节细胞(RGC)表达。CD3ζ或MHCI分子的突变损害了RGC结构和功能的发展。在这项研究中,我们研究了CD3ζ介导的分子信号传导是否调节谷氨酸兴奋毒性中的RGC死亡。我们表明,CD3ζ的突变显着增加了NMDA诱导的兴奋性毒性中的RGC存活。此外,我们发现TCR的几个下游分子,包括Src(原癌基因酪氨酸蛋白激酶)家族激酶(SFKs)和脾酪氨酸激酶(Syk),由RGC表示。选择性抑制SFK成员,Hck,或Syk成员,Syk或Zap70在NMDA诱导的兴奋性毒性中显着增加了RGC的存活率。这些结果为揭示疾病条件下控制RGC死亡的潜在分子机制提供了直接证据。
    Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    青光眼是世界范围内第三大失明原因,其主要特征在于眼内压(IOP)升高。常见的风险因素,如年龄,近视,眼外伤,和高血压都会增加IOP升高的风险。长时间的高眼压不仅会引起头痛等生理不适,但也直接损害视网膜细胞,导致视网膜缺血,氧化失衡,和视网膜中活性氧(ROS)的积累。这种氧化应激导致蛋白质和不饱和脂质的氧化,导致过氧化物形成和加剧视网膜损伤。虽然目前的临床治疗主要针对通过药物或手术降低IOP,目前没有有效的方法来减轻与青光眼相关的视网膜细胞损伤。为了解决这个差距,我们开发了一种新型纳米乳剂,用于共同递送拉坦前列素和α-生育酚(后来称为LA@VNE),通过局部给药延长眼部滞留并增强视网膜通透性.通过封装拉坦前列素,一种降低眼压的药物,和α-生育酚,一种强效的抗氧化剂,我们有效地减少了ROS的积累(体外>1.5倍,体内>2.5倍),视网膜神经节细胞(RGC)凋亡(>9倍),和炎性细胞浸润(>1.6倍)。我们的方法显示出强的生物相容性和临床翻译的显著潜力,为青光眼的治疗提供了一个有前途的平台。
    Glaucoma is the third leading cause of blindness worldwide and is primarily characterized by elevated intraocular pressure (IOP). Common risk factors such as age, myopia, ocular trauma, and hypertension all increase the risk of elevated IOP. Prolonged high IOP not only causes physiological discomfort like headaches, but also directly damages retinal cells and leads to retinal ischemia, oxidative imbalance, and accumulation of reactive oxygen species (ROS) in the retina. This oxidative stress causes the oxidation of proteins and unsaturated lipids, leading to peroxide formation and exacerbating retinal damage. While current clinical treatments primarily target reducing IOP through medication or surgery, there are currently no effective methods to mitigate the retinal cell damage associated with glaucoma. To address this gap, we developed a novel nanoemulsion to co-delivery latanoprost and α-tocopherol (referred to as LA@VNE later) that prolongs ocular retention and enhances retinal permeability through localized administration. By encapsulating latanoprost, an IOP-lowering drug, and α-tocopherol, a potent antioxidant, we effectively reduced ROS accumulation (>1.5-fold in vitro and 2.5-fold in vivo), retinal ganglion cell (RGC) apoptosis (>9 fold), and inflammatory cell infiltration (>1.6 fold). Our approach showed strong biocompatibility and significant potential for clinical translation, providing a promising platform for the treatment of glaucoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    视网膜神经节细胞(RGC)是将视觉信息从视网膜传递到大脑的唯一输出神经元。不同的损伤和病理状态导致RGC体细胞和轴突变性,导致不可逆的视力丧失。一个基本的问题是,操纵RGC生存的关键调节因子是否可以保护RGC免受各种损害和病理状态的影响。并最终保持视力。这里,我们报告说,CaMKII-CREB信号在兴奋毒性损伤RGC体细胞或视神经损伤RGC轴突后受损,并且该途径的再激活能有力地保护RGC免受两种损伤。CaMKII活性还促进正常视网膜中的RGC存活。Further,CaMKII的再激活在两种青光眼模型中保护RGCs,其中RGCs因眼内压升高或遗传缺陷而退化。最后,CaMKII再激活保护体内的长距离RGC轴突投射并保留视觉功能,从视网膜到视觉皮层,和视觉引导的行为。
    Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号