Pyridylamination

  • 文章类型: Journal Article
    胶浆是成熟种子水合后从种皮的表皮细胞释放的凝胶状且粘稠的亲水性多糖,主要由无分支的鼠李糖半乳糖醛酸I(RG-I)组成。在这项研究中,我们在裂殖酵母裂殖酵母中从刺曲霉(AaRhgA)中生产了重组内切RG-I水解酶,并检查了其对具有各种聚合度(DP)的吡啶基胺化(PA)RG-I的底物偏好。重组AaRhgA的水解酶活性需要DP为10或更高的PA-RG-I。我们在强组成型启动子下异源表达AarhgA基因,花椰菜花叶病毒35S启动子,拟南芥。在对从转基因植物的吸水种子中释放的每个粘液部分进行的一系列生化分析中,我们发现透明粘液层的沉积增强,该粘液层存在于粘附粘液的周围区域,并且未被钌红染色。这项研究证明了通过异源表达endo-RG-I水解酶来操纵粘液组织的可行性。
    Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity. We heterologously expressed the AarhgA gene under the strong constitutive promoter, cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana. In a series of biochemical analyses of each mucilage fraction released from the water-imbibed seeds of the transgenic plants, we found the enhanced deposition of the transparent mucilage layer that existed in the peripheral regions of the adherent mucilage and was not stained with ruthenium red. This study demonstrated the feasibility of manipulating the mucilage organization by heterologous expression of the endo-RG-I hydrolase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Polygalacturonases (PGs) hydrolyze α-1,4-linked d-galacturonic acid (GalUA) in polygalacturonic acid. Previously, PG activity in pea seedlings was found in the Golgi apparatus, where pectin biosynthesis occurs. However, the corresponding genes encoding Golgi-localized PG proteins have never been identified in the higher plants. In this study, we cloned the 5 Arabidopsis genes encoding putative membrane-bound PGs from clade F PGs (AtPGFs) as the first step for the discovery of the Golgi-localized PGs. Five AtPGF proteins (AtPGF3, AtPGF6, AtPGF10, AtPGF14 and AtPGF16) were heterologously produced in Schizosaccharomyces pombe. Among these, only the AtPGF10 protein showed in vitro exo-type PG activity toward fluorogenic pyridylaminated-oligogalacturonic acids (PA-OGAs) as a substrate. The optimum PG activity was observed at pH 5.5 and 60°C. The recombinant AtPGF10 protein showed the maximum PG activities toward PA-OGA with 10 degrees of polymerization. The apparent Km values for the PA-OGAs with 7, 11 and 14 degrees of polymerization were 8.0, 22, and 5.9 μM, respectively. This is the first report of the identification and enzymatic characterization of AtPGF10 as PG carrying putative membrane-bound domain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Glycogen debranching enzyme (GDE), together with glycogen phosphorylase (GP), is responsible for the complete degradation of glycogen. GDE has distinct catalytic sites for 4-α-glucanotransferase and amylo-α-1,6-glucosidase. For the GDE sensitive assay, we previously developed the GP limit fluorogenic branched dextrin Glcα1-4Glcα1-4Glcα1-4Glcα1-4(Glcα1-4Glcα1-4Glcα1-4Glcα1-6)Glcα1-4Glcα1-4Glcα1-4GlcPA (B4/84, where Glc = D-glucose and GlcPA = 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol). However, B4/84 is not widely available because of difficulties in its chemical synthesis and positional-isomer separation (0.33% yield by α-1,6-coupling of maltotetraose with Glc7-GlcPA). In this study, we attempted to develop an efficient method for the preparation of Glcα1-4Glcα1-4Glcα1-4Glcα1-4(Glcα1-4Glcα1-4Glcα1-4Glcα1-6)Glcα1-4Glcα1-4GlcPA (B3/74), which was designed to have the minimum essential dextrin structure for GDE. First, Glcα1-6Glcα1-4Glcα1-4GlcPA (B3/31) was prepared from commercially available Glcα1-6Glcα1-4Glcα1-4Glc. Using α-cyclodextrin as a donor substrate, cyclodextrin glucanotransferase elongated both the main and side branches on B3/31, while all the glycosidic bonds in B3/31 were left intact. After exhaustive digestion with GP, B3/74 was obtained from B3/31 with 16% yield, a value that is 48-fold greater than that previously reported for B4/84. GDE 4-α-glucanotransferase exhibited high activity toward both B3/74 and B4/84. In addition, we studied the efficient conversion of B3/74 into Glcα1-4Glcα1-4Glcα1-4Glcα1-4(Glcα1-6)Glcα1-4Glcα1-4GlcPA (B3/71), which has the best dextrin structure for the GDE amylo-α-1,6-glucosidase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    It is widely known that sulfate ion at high concentration serves like an allosteric activator of glycogen phosphorylase (GP). Based on the crystallographic studies on GP, it has been assumed that the sulfate ion is bound close to the phosphorylatable Ser14 site of nonactivated GP, causing a conformational change to catalytically-active GP. However, there are also reports that sulfate ion inhibits allosterically-activated GP by preventing the phosphate substrate from attaching to the catalytic site. In the present study, using a high concentration of sulfate ion, significant enhancement of GP activity was observed when macromolecular glycogen was used as substrate but not when smaller maltohexaose was used. In glycogen solution, nonreducing-end glucose residues are localized on the surface of glycogen and are not distributed homogenously in the solution. Using cyclodextrin-immobilized column chromatography, we found that sulfate at high concentration promoted GP-dextrin binding through the dextrin-binding site (DBS) located away from the catalytic site. This result is consistent with the properties of the DBSs found in glycogen-debranching enzyme and β-amylase. Therefore, we propose a new interpretation of the sulfate activation of GP, wherein sulfate ions at high concentration promote glycogen-binding to the DBS directly, and glycogen-binding to the catalytic site indirectly. Our findings were successfully applied to the affinity purification of porcine brain GP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Glycogen phosphorylase (GP) is an allosteric enzyme whose catalytic site comprises six subsites (SG1, SG-1, SG-2, SG-3, SG-4, and SP) that are complementary to tandem five glucose residues and one inorganic phosphate molecule, respectively. In the catalysis of GP, the nonreducing-end glucose (Glc) of the maltooligosaccharide substrate binds to SG1 and is then phosphorolyzed to yield glucose 1-phosphate. In this study, we probed the catalytic site of rabbit muscle GP using pyridylaminated-maltohexaose (Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glcα1-4GlcPA, where GlcPA = 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol]; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (Glc m -AltNAc-Glc n -GlcPA, where m + n = 4 and AltNAc is 3-acetoamido-3-deoxy-D-altrose). PA-0 served as an efficient substrate for GP, whereas the other PA-0 derivatives were not as good as the PA-0, indicating that substrate recognition by all the SG1 -SG-4 subsites was important for the catalysis of GP. By comparing the initial reaction rate toward the PA-0 derivatives (V derivative) with that toward PA-0 (V PA-0), we found that the value of V derivative/V PA-0 decreased significantly as the level of allosteric activation of GP increased. These results suggest that some conformational changes have taken place in the maltooligosaccharide-binding region of the GP catalytic site during allosteric regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    果胶是一种主要由聚半乳糖醛酸(PGA)组成的植物细胞壁成分,线性α1,4-d-半乳糖醛酸(GalUA)骨架。聚半乳糖醛酸酶(PG)水解PGA中的α1,4-键。迄今为止鉴定的几乎所有植物PG都作为可溶性蛋白质分泌。在这里,我们描述了豌豆(Pisumsativum)上胚轴中的微粒体PG活性,并提供了生化证据表明它位于高尔基体,果胶是生物合成的。微粒体PG被纯化,它被酶学表征。纯化的酶对具有六个聚合度的吡啶基胺化低聚半乳糖醛酸(PA-GalUA6)显示出最大的活性,PA-GalUA6的Km值为11μM。该酶的底物偏好与PGA合酶互补。通过蔗糖密度梯度超速离心在高尔基体部分中检测微粒体中的主要PG活性。在快速生长的上胚轴中,微粒体PG的活性较低,与PGA合酶的高表达相反。讨论了该PG在调节果胶生物合成或植物生长中的作用。
    Pectin is a plant cell wall constituent that is mainly composed of polygalacturonic acid (PGA), a linear α1,4-d-galacturonic acid (GalUA) backbone. Polygalacturonase (PG) hydrolyzes the α1,4-linkages in PGA. Nearly all plant PGs identified thus far are secreted as soluble proteins. Here we describe the microsomal PG activity in pea (Pisum sativum) epicotyls and present biochemical evidence that it was localized to the Golgi apparatus, where pectins are biosynthesized. The microsomal PG was purified, and it was enzymatically characterized. The purified enzyme showed maximum activity towards pyridylaminated oligogalacturonic acids with six degrees of polymerization (PA-GalUA6), with a Km value of 11 μM for PA-GalUA6. The substrate preference of the enzyme was complementary to that of PGA synthase. The main PG activity in microsomes was detected in the Golgi fraction by sucrose density gradient ultracentrifugation. The activity of the microsomal PG was lower in rapidly growing epicotyls, in contrast to the high expression of PGA synthase. The role of this PG in the regulation of pectin biosynthesis or plant growth is discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    我们描述了从牛血清白蛋白和吡啶基胺化聚糖的缀合制备新糖蛋白的方法。大量的聚糖(>1mg)可以被吡啶基胺化,然后通过与氢反应,随后与肼反应,转化为它们的1-氨基-1-脱氧衍生物。然后,这些吡啶基胺化的聚糖可以通过与N-(间马来酰亚胺苯甲酰氧基)琥珀酰亚胺酯化而与牛血清白蛋白缀合,以形成新糖蛋白,例如,糖基化牛血清白蛋白。作为一个示范,我们制备了高甘露糖牛血清白蛋白,将其固定在活化的载玻片上。然后,我们发现新糖蛋白与Cy3标记的头颅晶状体凝集素结合,一种甘露糖特异性植物凝集素,使用瞬逝场激活的荧光扫描仪系统检测到。
    We describe the method to prepare neoglycoproteins from the conjugation of bovine serum albumin and pyridylaminated glycans. Large quantities of glycans (>1 mg) can be pyridylaminated and then converted to their 1-amino-1-deoxy derivatives by reaction with hydrogen followed by hydrazine. These pyridylaminated glycans can then be conjugated to bovine serum albumin via esterification with N-( m-maleimidobenzoyloxy)succinimide to form a neoglycoprotein, e.g., glycosylated bovine serum albumin. As a demonstration, we prepared High-mannose bovine serum albumin, which was immobilized on an activated glass slide. Then, we showed that the neoglycoprotein bind to Cy3-labeled Lens culinaris agglutinin, a mannose-specific plant lectin, as detected using an evanescent-field-activated fluorescence scanner system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comparative Study
    Pristionchus pacificus is a free-living nematode increasingly used as an organism for comparison to the more familiar model Caenorhabditis elegans. In this study, we examined the N-glycans of this organism isolated after serial release with peptide:N-glycosidases F and A; after fluorescent labelling with 2-aminopyridine, chromatographic fractionation by three types of RP-HPLC (with either classical C18, fused core C18 or alkylamide-bonded phases) followed by mass spectrometric analyses revealed key features of its N-glycome. In addition to paucimannosidic and oligomannosidic glycans typical of invertebrates, N-glycans with two core fucose residues were detected. Furthermore, a range of glycans carrying up to three phosphorylcholine residues was observed whereas, unlike C. elegans, no tetrafucosylated N-glycans were detected. Structures with three fucose residues, unusual methylation of core α1,3-fucose or with galactosylated fucose motifs were found in low amounts; these features may correlate with a different ensemble or expression of glycosyltransferase genes as compared to C. elegans. From an analytical perspective, both the alkylamide RP-amide and fused core C18 columns, as compared to a classical C18 material, offer advantages in terms of resolution and of elution properties, as some minor pyridylamino-labelled glycans (e.g. those carrying phosphorylcholine) appear in earlier fractions and so potential losses of such structures due to insufficient gradient length can be avoided.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits. Each subunit has two distinct maltooligosaccharide binding sites: a storage site and a catalytic site. Our characterization of the properties of these sites suggested that GP activity consists of two activities: (i) binding to the glycogen molecule and (ii) phosphorolysis of the non-reducing-end glucose residues. Activity (i) is mainly due to the activities of the two storage sites, which depended on the ionic strength of the medium and were directly inhibited by cyclodextrins (CDs). Activity (i) is of benefit to GP because a high concentration of non-reducing-end glucose residues is localized on the surface of the glycogen molecule. Activity (ii), the total activity of the two catalytic sites, exhibited relatively little ionic strength dependence. Because the combined activity of (i) and (ii) is deduced using glycogen as an assay substrate, the sole activity of (ii) must be measured using small maltooligosyl-substrates. By using a very low concentration of pyridylaminated maltohexaose, we demonstrated that the GP catalytic sites are active even in the presence of CDs, and that the actions of the catalytic site and the storage site are independent of each other.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号