Purine Nucleotides

嘌呤核苷酸
  • 文章类型: Journal Article
    胆碱是磷脂生物合成的必需营养素,神经递质,和一碳代谢,关键的一步是将其导入线粒体。然而,潜在的机制和生物学意义仍然知之甚少。这里,我们报道了SLC25A48,一种以前未表征的线粒体内膜载体蛋白,控制线粒体胆碱运输和胆碱衍生的甲基供体的合成。我们发现SLC25A48是棕色脂肪产热所必需的,线粒体呼吸,和线粒体膜的完整性。通过SLC25A48摄取到线粒体基质中的胆碱促进了甜菜碱和嘌呤核苷酸的合成,而SLC25A48的丢失导致线粒体活性氧和线粒体脂质失衡的产生增加。值得注意的是,在SLC25A48基因上携带单核苷酸多态性的人类细胞和缺乏SLC25A48的癌细胞表现出减少的线粒体胆碱输入,氧化应激增加,细胞增殖受损。一起,这项研究表明,SLC25A48调节线粒体胆碱分解代谢,生物能学,细胞存活。
    Choline is an essential nutrient for the biosynthesis of phospholipids, neurotransmitters, and one-carbon metabolism with a critical step being its import into mitochondria. However, the underlying mechanisms and biological significance remain poorly understood. Here, we report that SLC25A48, a previously uncharacterized mitochondrial inner-membrane carrier protein, controls mitochondrial choline transport and the synthesis of choline-derived methyl donors. We found that SLC25A48 was required for brown fat thermogenesis, mitochondrial respiration, and mitochondrial membrane integrity. Choline uptake into the mitochondrial matrix via SLC25A48 facilitated the synthesis of betaine and purine nucleotides, whereas loss of SLC25A48 resulted in increased production of mitochondrial reactive oxygen species and imbalanced mitochondrial lipids. Notably, human cells carrying a single nucleotide polymorphism on the SLC25A48 gene and cancer cells lacking SLC25A48 exhibited decreased mitochondrial choline import, increased oxidative stress, and impaired cell proliferation. Together, this study demonstrates that SLC25A48 regulates mitochondrial choline catabolism, bioenergetics, and cell survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    代谢失调是小儿神经退行性疾病的最常见原因之一。然而,普遍存在的和必需的代谢途径的破坏如何主要影响神经组织尚不清楚.在这里,我们使用由AMPD2缺乏引起的儿童神经退行性疾病的小鼠模型来研究导致嘌呤代谢失衡的选择性神经元脆弱性的细胞和分子机制。我们显示AMPD2缺乏的小鼠模型表现出海马齿状回的主要变性,尽管大脑GTP水平普遍降低。神经变性抗性区域积累了IMPDH2的微米大小的细丝,这是GTP合成中的限速酶,而这些细丝在海马齿状回中几乎无法检测到。此外,我们表明,IMPDH2丝的拆卸降低了GTP水平,并损害了来自人类AMPD2缺乏症个体的神经祖细胞的生长。一起,我们的研究结果表明,IMPDH2聚合可以防止有害的GTP剥夺,开辟了探索诱导IMPDH2组装作为神经变性疗法的可能性。
    Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:线粒体解偶联蛋白1(UCP1)是棕色脂肪组织特有的蛋白。在被游离脂肪酸激活后,UCP1促进穿过线粒体内膜的产热净质子通量。非复合嘌呤核苷酸抑制这种脂肪酸诱导的UCP1活性。最可用的数据是从啮齿动物模型系统生成的。鉴于其作为治疗代谢性疾病的推定药理学靶标的作用,对人类UCP1活性的深入分析,regulation,结构特征是必不可少的。
    方法:在本研究中,我们建立了具有诱导型人或鼠UCP1表达的多西环素调节细胞模型,并使用呼吸测量法进行了功能研究,比较了人UCP1的野生型和突变型.
    结果:我们证明了人和小鼠UCP1表现出相似的特异性脂肪酸诱导活性,但嘌呤核苷酸的抑制潜力不同。人UCP1中非保守残基的诱变揭示了α-螺旋56和α-螺旋6中的结构成分对解偶联功能至关重要。
    结论:人类UCP1与其他直系同源物的比较研究可以为这种线粒体载体的结构-功能关系提供新的见解,并将有助于寻找新的激活剂。
    OBJECTIVE: Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential.
    METHODS: In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1.
    RESULTS: We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function.
    CONCLUSIONS: Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在最近出现在Cell1和细胞代谢中的两项研究中,2Tran等人。和Wu等人。描述在生物体和细胞嘌呤核苷酸补救途径中被低估的细微差别,并确定嘌呤补救是肿瘤生长的代谢限制。
    In two recent studies appearing in Cell1 and Cell Metabolism,2 Tran et al. and Wu et al. describe underappreciated nuance in organismal and cellular purine nucleotide salvage pathways and identify purine salvage as a metabolic limitation for tumor growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    嘌呤核苷酸对于RNA和DNA合成至关重要,信令,新陈代谢,和能量稳态。要合成嘌呤,细胞使用两种主要途径:从头途径和救助途径。传统上,据认为,增殖细胞主要依赖于从头合成,而分化的组织倾向于挽救途径。出乎意料的是,我们发现腺嘌呤和肌苷是向组织和肿瘤提供嘌呤核苷酸的最有效的循环前体,而次黄嘌呤在体内快速分解代谢且回收不良。定量代谢分析证明了从头合成和补救途径在维持肿瘤中嘌呤核苷酸库方面的比较贡献。值得注意的是,喂食小鼠核苷酸加速肿瘤生长,而抑制嘌呤挽救减缓肿瘤进展,揭示了挽救途径在肿瘤代谢中的关键作用。这些发现为正常组织和肿瘤如何维持嘌呤核苷酸提供了基本见解,并强调了嘌呤补救在癌症中的重要性。
    Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA标记是研究核酸功能和定位的宝贵工具。标记通常掺入RNA的3'末端,用于此目的的主要酶是RNA聚(A)聚合酶(PAP),其属于末端核苷酸转移酶(NTases)的类别。然而,PAP优先添加ATP类似物,因此限制了可用基板的数量。这里,我们报告了另一种NTase的使用,来自真菌Thielaviaterrestridis的CutA。使用这种酶,我们不仅能够将嘌呤类似物整合到RNA的3'末端,还有嘧啶类似物.我们使用菌株促进的叠氮化物-烷基环加成(SPAAC)从CutA用叠氮化物类似物延伸的RNA中获得荧光标记或生物素化的转录物。重要的是,修饰的转录本保留了它们的生物学特性。此外,荧光标记的mRNA适用于培养的哺乳动物细胞中的可视化。最后,我们证明,无论是亲和力研究或分子动力学(MD)模拟允许NTase底物的快速筛选,为寻找此类酶的最佳底物开辟了新途径。
    RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3\' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates. Here, we report the use of another NTase, CutA from the fungus Thielavia terrestris. Using this enzyme, we were able to incorporate into the 3\' end of RNA not only purine analogs, but also pyrimidine analogs. We engaged strain-promoted azide-alkyl cycloaddition (SPAAC) to obtain fluorescently labeled or biotinylated transcripts from RNAs extended with azide analogs by CutA. Importantly, modified transcripts retained their biological properties. Furthermore, fluorescently labeled mRNAs were suitable for visualization in cultured mammalian cells. Finally, we demonstrate that either affinity studies or molecular dynamic (MD) simulations allow for rapid screening of NTase substrates, what opens up new avenues in the search for the optimal substrates for this class of enzymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过核苷酸生物合成支持细胞增殖是癌细胞的基本要求。因此,抑制叶酸介导的一碳(1C)代谢,这是核苷酸合成所必需的,已成功用于抗癌治疗。这里,我们发现线粒体叶酸代谢在患者来源的白血病干细胞(LSCs)中上调.我们证明,通过抑制从头嘌呤合成来抑制线粒体1C代谢对慢性髓性白血病(CML)细胞具有细胞抑制作用。因此,嘌呤核苷酸水平的变化导致AMPK信号的激活和mTORC1活性的抑制。值得注意的是,抑制线粒体1C代谢可增加红系分化标志物的表达。此外,我们发现,分化的增加独立于AMPK信号发生,并且可以通过嘌呤水平的重建和mTORC1的重新激活来逆转。与临床相关,我们确定1C代谢抑制与伊马替尼的组合,慢性粒细胞白血病患者的一线治疗,在患者来源的异种移植模型中减少治疗抗性CMLLSCs的数量.我们的结果强调了叶酸代谢和嘌呤感应在干细胞命运决定和白血病发生中的作用。
    Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大多数自然有能力的细菌都会严格调节主管状态的窗口,以在特定条件下最大程度地提高其生态适应性。流感嗜血杆菌RdKW20菌株的能力发育受cAMP刺激,并受嘌呤核苷酸抑制,分别。相比之下,cAMP抑制细胞生长,但是核苷酸对KW20的生长很重要。然而,上述相互影响的潜在机制尚不清楚。这里,我们首先鉴定了大肠杆菌的周质酸性磷酸酶AphAEc作为一种新的cAMP结合蛋白。我们显示cAMP竞争性抑制KW20菌株中AphAEc及其同源蛋白AphAHi的磷酸酶活性。此外,我们发现cAMP抑制另外两种周质非特异性磷酸酶,NadNHi(它提供了基本的生长因子V,KW20中的NAD)和HelHi(eP4,将NADP转换为NAD)。我们证明cAMP抑制细胞生长速率,尤其是通过NadNHi。另一方面,嘌呤核苷酸AMP对能力的抑制作用在三重缺失突变体ΔhelHiΔnadNHiΔaphAHi中被消除,但不是单身,双缺失或互补菌株。腺苷,然而,仍然抑制了三重缺失突变体的能力,证明了三种磷酸酶在将核苷酸转化为核苷并因此抑制KW20能力中的关键作用。最后,cAMP以剂量依赖的方式恢复了GMP抑制的能力,但不是鸟苷抑制的能力。总之,我们发现这三种周质磷酸酶是cAMP和嘌呤核苷酸对流感嗜血杆菌的细胞生长和能力发育的拮抗作用的关键参与者。
    Most naturally competent bacteria tightly regulate the window of the competent state to maximize their ecological fitness under specific conditions. Development of competence by Haemophilus influenzae strain Rd KW20 is stimulated by cAMP and inhibited by purine nucleotides, respectively. In contrast, cAMP inhibits cell growth, but nucleotides are important for KW20 growth. However, the mechanisms underlying the abovementioned reciprocal effects are unclear. Here, we first identified a periplasmic acid phosphatase AphAEc of Escherichia coli as a new cAMP-binding protein. We show cAMP competitively inhibits the phosphatase activities of AphAEc and its homolog protein AphAHi in the KW20 strain. Furthermore, we found cAMP inhibits two other periplasmic nonspecific phosphatases, NadNHi (which provides the essential growth factor V, NAD) and HelHi (eP4, which converts NADP to NAD) in KW20. We demonstrate cAMP inhibits cell growth rate, especially via NadNHi. On the other hand, the inhibitory effect of purine nucleotide AMP on competence was abolished in the triple deletion mutant ΔhelHiΔnadNHiΔaphAHi, but not in the single, double deletion or complemented strains. Adenosine, however, still inhibited the competence of the triple deletion mutant, demonstrating the crucial role of the three phosphatases in converting nucleotides to nucleosides and thus inhibiting KW20 competence. Finally, cAMP restored the competence inhibited by GMP in a dose-dependent manner, but not competence inhibited by guanosine. Altogether, we uncovered these three periplasmic phosphatases as the key players underlying the antagonistic effects of cAMP and purine nucleotides on both cell growth and competence development of H. influenzae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:Lesch-Nyhan病(LND)是由次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(HGprt)的遗传缺陷引起的严重神经系统疾病,参与嘌呤合成的一种酶。为了弥补这种不足,嘌呤从头生物合成途径加速。大多数研究未能在从患者获得的培养细胞中发现嘌呤核苷酸的任何一致异常。最近,已显示5-氨基咪唑-4-甲酰胺核苷5'-单磷酸酯(ZMP),从头途径的中间部分,在含有生理水平(25nM)叶酸(FA)的RPMI维持的LND成纤维细胞中积累,这与常规细胞培养基的FA水平(2200nM)有很大不同。然而,RPMI和其他标准培养基含有非生理水平的许多营养素,对细胞代谢有很大影响,不能准确概括细胞的体内行为。
    方法:我们准备了一种新的培养基,其中含有所有营养物质的生理水平,包括维生素(Plasmax-PV),研究可能被非生理介质的使用所掩盖的LND成纤维细胞的潜在变化。我们定量了不同培养条件下的ZMP积累,并评估了两种已知的ZMP靶蛋白(AMPK和ADSL)的活性,叶酸载体SLC19A1的mRNA表达,LND成纤维细胞中可能的线粒体改变和功能后果。
    结果:用Plasmax-PV维持的LND成纤维细胞表现出代谢适应,例如更高的糖酵解能力,与对照相比,叶酸载体SCL19A1的表达增加,以及诸如线粒体电位降低和细胞迀移减少的功能改变。这些改变可以用高水平的叶酸逆转,这表明叶酸补充剂可能是LND的潜在治疗方法。
    结论:完整的生理细胞培养基揭示了Lesch-Nyhan病的新变化。这项工作强调了在研究代谢紊乱时使用生理细胞培养条件的重要性。
    BACKGROUND: Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5\'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells.
    METHODS: We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts.
    RESULTS: LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND.
    CONCLUSIONS: A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嘌呤核苷酸在心脏的能量代谢中起重要作用。最根本的是,腺嘌呤核苷酸三磷酸腺苷(ATP)水解的自由能为包括肌动蛋白-肌球蛋白交叉桥循环在内的许多细胞过程提供了热力学驱动力。心肌中ATP供应和/或需求的扰动导致嘌呤核苷酸合成之间的稳态平衡发生变化。降解,和打捞,潜在影响心肌能量学,因此,心肌力学。的确,在心力衰竭中,急性心肌缺血和心肌失代偿性重构均与心肌腺嘌呤核苷酸的消耗和心肌机械功能受损有关。然而,在对腺嘌呤核苷酸降解与心脏病收缩功能障碍之间的机制联系的理解方面仍然存在差距。本文的范围是:(i)回顾急性缺血和慢性心脏病中嘌呤核苷酸耗竭和挽救途径的最新知识;(ii)回顾将心肌力学和能量学与心肌腺嘌呤核苷酸调节联系起来的假设机制;(iii)强调治疗与这些途径相关的心肌代谢和机械功能障碍的潜在目标。假设退化的不平衡,打捞,和腺嘌呤核苷酸的合成导致腺嘌呤核苷酸在急性缺血和与心力衰竭发展相关的慢性高需求条件下的净损失。腺嘌呤核苷酸水平的这种降低导致减少的心肌ATP和增加的心肌无机磷酸盐。这两种变化都有可能直接影响细胞水平的张力发展和机械功。©2024美国生理学会。ComprPhysiol14:5345-5369,2024。
    Purine nucleotides play central roles in energy metabolism in the heart. Most fundamentally, the free energy of hydrolysis of the adenine nucleotide adenosine triphosphate (ATP) provides the thermodynamic driving force for numerous cellular processes including the actin-myosin crossbridge cycle. Perturbations to ATP supply and/or demand in the myocardium lead to changes in the homeostatic balance between purine nucleotide synthesis, degradation, and salvage, potentially affecting myocardial energetics and, consequently, myocardial mechanics. Indeed, both acute myocardial ischemia and decompensatory remodeling of the myocardium in heart failure are associated with depletion of myocardial adenine nucleotides and with impaired myocardial mechanical function. Yet there remain gaps in the understanding of mechanistic links between adenine nucleotide degradation and contractile dysfunction in heart disease. The scope of this article is to: (i) review current knowledge of the pathways of purine nucleotide depletion and salvage in acute ischemia and in chronic heart disease; (ii) review hypothesized mechanisms linking myocardial mechanics and energetics with myocardial adenine nucleotide regulation; and (iii) highlight potential targets for treating myocardial metabolic and mechanical dysfunction associated with these pathways. It is hypothesized that an imbalance in the degradation, salvage, and synthesis of adenine nucleotides leads to a net loss of adenine nucleotides in both acute ischemia and under chronic high-demand conditions associated with the development of heart failure. This reduction in adenine nucleotide levels results in reduced myocardial ATP and increased myocardial inorganic phosphate. Both of these changes have the potential to directly impact tension development and mechanical work at the cellular level. © 2024 American Physiological Society. Compr Physiol 14:5345-5369, 2024.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号