Pt single atoms

  • 文章类型: Journal Article
    金属单原子的锚定位点与光生载流子动力学和表面反应密切相关。通过精确设计单原子锚定位点实现平滑的光生电荷转移是增强光催化析氢活性的有效策略。在这项研究中,将Pt单原子负载到具有双配位氮空位的超薄氮化碳上(VN2c-UCN-Pt)和具有三配位氮空位的超薄氮化碳上(VN3c-UCN-Pt)。本文研究了Pt单原子在不同锚定位点的光催化析氢性能和光生载流子行为。表面光电压测量表明,与VN3c-UCN-Pt相比,VN2c-UCN-Pt表现出优异的载流子分离效率。更重要的是,在H2O分子存在下,表面光电压信号显着下降。理论计算表明,VN2c-UCN-Pt在吸附和活化H2O分子方面表现出优异的能力。因此,VN2c-UCN-Pt的光催化析氢效率达到1774µmolg-1h-1,是相同Pt负载量下VN3c-UCN-Pt的1.8倍。这项工作强调了单原子锚定位点与光催化活性之间的结构-活性关系,为设计精确分散的单原子位点以实现高效的光催化析氢提供了新的视角。
    The anchoring sites of metal single atoms are closely related to photogenerated carrier dynamics and surface reactions. Achieving smooth photogenerated charge transfer through precise design of single-atom anchoring sites is an effective strategy to enhance the activity of photocatalytic hydrogen evolution. In this study, Pt single atoms were loaded onto ultra-thin carbon nitride with two-coordination nitrogen vacancies (VN2c-UCN-Pt) and ultra-thin carbon nitride with three-coordination nitrogen vacancies (VN3c-UCN-Pt). This paper investigated the photocatalytic hydrogen evolution performance and photogenerated carrier behavior of Pt single atoms at different anchoring sites. Surface photovoltage measurements indicated that VN2c-UCN-Pt exhibits a superior carrier separation efficiency compared to VN3c-UCN-Pt. More importantly, the surface photovoltage signal under the presence of H2O molecules revealed a significant decrease. Theoretical calculations suggest that VN2c-UCN-Pt exhibits superior capabilities in adsorbing and activating H2O molecules. Consequently, the photocatalytic hydrogen evolution efficiency of VN2c-UCN-Pt reaches 1774 µmol g-1h-1, which is 1.8 times that of VN3c-UCN-Pt with the same Pt loading. This work emphasized the structure-activity relationship between single-atom anchoring sites and photocatalytic activity, providing a new perspective for designing precisely dispersed single-atom sites to achieve efficient photocatalytic hydrogen evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    制备稳健的孤立原子催化剂一直是环境催化领域中去除各种污染物的研究热点,但是在提高反应性和稳定性方面仍然存在挑战。在这里,通过在氧化锆(Pt-Na/ZrO2)上的Pt催化剂中容易掺杂碱金属,成功制备了通过氧桥与碱金属缔合的原子分散的Ptδ-O(OH)x-。这种新型催化剂的CO和碳氢化合物(HC:C3H8,C7H8,C3H6和CH4)氧化活性明显高于其对应物(Pt/ZrO2)。来自实验和密度泛函理论计算的系统直接和可靠的证据表明,制造的富电子Ptδ-O(OH)x-与Na物种有关,而不是原始的Ptδ-O(OH)x-,作为催化活性物种,可以很容易地与吸附在Ptδ上的CO反应以产生CO2,并且在速率确定步骤中的能垒从1.97eV显着降低至0.93eV。此外,由于Na物种强烈吸附和活化的水,那些通过Na物种连接的单位点Ptδ-O(OH)x-可以在氧化反应中容易地再生,从而大大提高其氧化反应性和耐久性。通过Li和K改性也实现了碱离子连接的活性羟基的这种简单构造,这可以指导设计用于从工业废气中去除CO和HC的有效催化剂。
    Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    监测人体内抗坏血酸(AA)水平可为疾病诊断提供有价值的线索。在钙钛矿基底上锚定贵金属单原子是设计具有优异电催化性能的电催化剂的一种有前途的策略。在这里,我们利用固定在玻碳电极上的Pt单原子掺杂的CsPbBr3纳米晶体(PtSA/CsPbBr3NCs)作为电化学催化剂,设计了一种检测AA的电化学方法。未充电的3,5,3\',由于PtSA/CsPbBr3NC的优异的电化学催化性能,5'-四甲基联苯胺(TMB)经历氧化以形成带正电荷的氧化TMB(oxTMB)。随后,目标AA将oxTMB降低为TMB,然后电催化氧化为oxTMB,产生显著的氧化电流。这样,这种特性为AA检测提供了灵敏的电化学策略,达到50倍的浓度范围,检测限为0.0369μM。所开发的电化学方法还成功地产生了复杂样品介质(尿液)中AA的准确检测响应。总的来说,这种方法有望为疾病的早期诊断提供新的途径。
    Monitoring ascorbic acid (AA) levels in human body can provide valuable clues for disease diagnosis. Anchoring noble metal single atoms on perovskite substrate is a promising strategy to design electrocatalysts with outstanding electrocatalytic performance. Herein, we design an electrochemical method for detecting AA by utilizing Pt single atoms-doped CsPbBr3 nanocrystals (Pt SA/CsPbBr3 NCs) fixed on a glassy carbon electrode as an electrochemical catalyst. The uncharged 3,5,3\',5\'-tetramethylbenzidine (TMB) undergoes oxidation to form the positively charged oxidized TMB (oxTMB) owing to the exceptional electrochemical catalytic performance of Pt SA/CsPbBr3 NCs. Subsequently, the target AA reduces oxTMB to TMB, which is then electrocatalytically oxidized to oxTMB, producing significant oxidation current. In this way, such characteristic provides a sensitive electrochemical strategy for AA detection, achieving a concentration range of 50-fold with the detection limit of 0.0369 μM. The developed electrochemical method also successfully generates accurate detection response of AA in complex sample media (urine). Overall, this approach is expected to offer a novel way for early disease diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    绿色氢气的高效生产是发展可再生能源发电技术和维护生活环境的必要条件。这项研究报告了一种可控的工程方法,可通过低电负性过渡金属(Mn,Fe)部分(PtSA-Mn,Fe-NiLDHs)。我们探索了来自相邻过渡金属部分的电子捐赠导致具有PtSA(掺杂)和PtSA(ads)的低价态的良好调整的d带中心。),从而优化吸附能量以有效加速H2释放。同时,在具有独特电荷再分布和高价态的过渡金属中心上定制的局部化学环境作为H2O催化解离为氧的主要中心。因此,PtSA-Mn,Fe-NiLDH材料具有42和288mV的小超电势,可达到10mA·cm-2的氢和氧析出,分别,优于大多数报道的LDH基催化剂。此外,PtSA-Mn的质量活性,Fe-NiLDHs被证明是商业Pt-C的15.45倍。PtSA-Mn的阴离子交换膜电解槽堆,Fe-NiLDHs(+,-)在0.5A·cm-2时提供1.79V的电池电压,并在600h内具有出色的耐用性。这项研究为实际的水分解过程提供了一种有前途的电催化剂。
    High-performance production of green hydrogen gas is necessary to develop renewable energy generation technology and to safeguard the living environment. This study reports a controllable engineering approach to tailor the structure of nickel-layered double hydroxides via doped and absorbed platinum single atoms (PtSA) promoted by low electronegative transition metal (Mn, Fe) moieties (PtSA-Mn,Fe-Ni LDHs). We explore that the electron donation from neighboring transition metal moieties results in the well-adjusted d-band center with the low valence states of PtSA(doped) and PtSA(ads.), thus optimizing adsorption energy to effectively accelerate the H2 release. Meanwhile, a tailored local chemical environment on transition metal centers with unique charge redistribution and high valence states functions as the main center for H2O catalytic dissociation into oxygen. Therefore, the PtSA-Mn,Fe-Ni LDH material possesses a small overpotential of 42 and 288 mV to reach 10 mA·cm-2 for hydrogen and oxygen evolution, respectively, superior to most reported LDH-based catalysts. Additionally, the mass activity of PtSA-Mn,Fe-Ni LDHs proves to be 15.45 times higher than that of commercial Pt-C. The anion exchange membrane electrolyzer stack of PtSA-Mn,Fe-Ni LDHs(+,-) delivers a cell voltage of 1.79 V at 0.5 A·cm-2 and excellent durability over 600 h. This study presents a promising electrocatalyst for a practical water splitting process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近100%原子利用率的单原子(SA)催化剂已广泛应用于电解中,由于优于催化活性和选择性。然而,大多数已报道的SA催化剂是通过分散的单金属原子与基材的非金属原子之间的强键合固定的,极大地限制了SA催化剂电催化活性的可控调控。在这项工作中,通过在配位不饱和非晶态Ni(OH)2纳米片阵列上的可控电化学还原,成功构建了电子态可调的Pt-Ni键合PtSA催化剂。基于X射线吸收精细结构分析和第一性原理计算,PtSA与无定形Ni(OH)2的Ni位点键合,而不是常规的O位点,导致带负电荷的Ptδ-。原位拉曼光谱表明,结构和电子状态的变化大大提高了对活化氢原子的吸收性,是碱性析氢反应的重要中间体。从非晶态Ni(OH)2揭示了氢溢出过程,该过程有效地裂解了H2O的H-O-H键并产生H原子到PtSA位点,导致在碱性电解质中-1000mAcm-2mg-1Pt时48mV的低过电位,显然优于商业Pt/C催化剂。这项工作为SA催化剂局部结构的可控调制和电子状态的系统调节提供了新的策略。
    Single-atom (SA) catalysts with nearly 100% atom utilization have been widely employed in electrolysis for decades, due to the outperforming catalytic activity and selectivity. However, most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates, which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts. In this work, Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)2 nanosheet arrays. Based on the X-ray absorption fine structure analysis and first-principles calculations, Pt SA was bonded with Ni sites of amorphous Ni(OH)2, rather than conventional O sites, resulting in negatively charged Ptδ-. In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms, which were the essential intermediate for alkaline hydrogen evolution reaction. The hydrogen spillover process was revealed from amorphous Ni(OH)2 that effectively cleave the H-O-H bond of H2O and produce H atom to the Pt SA sites, leading to a low overpotential of 48 mV in alkaline electrolyte at -1000 mA cm-2 mg-1Pt, evidently better than commercial Pt/C catalysts. This work provided new strategy for the controllable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为具有成本效益的催化剂,铂(Pt)单原子催化剂(SAC)已引起广泛关注。然而,大多数研究表明,酸性析氢反应(HER)中的PtSAC遵循缓慢的Volmer-Heyrovsky(VH)机制,而不是快速动力学Volmer-Tafel(VT)途径。这里,这项工作提出,通过将Pt单原子(SA)与Pt簇(Cs)相关联,可以将PtSAC中的VH机制切换到更快的VT途径以实现有效的HER。我们的计算表明,PtSA和Cs之间的相关性显着影响暴露的Pt原子的电子结构,降低原子氢的吸附势垒,并实现更快的VT机制。为了验证这些发现,这项工作特意合成了三种催化剂:l-Pt@MoS2,m-Pt@MoS2和h-Pt@MoS2低,中度,和高铂负载,具有不同分布的PtSA和Cs。具有适当相关的PtSAs和Cs的m-Pt@MoS2催化剂表现出出色的性能,超电势为47mV,塔菲尔斜率为32mVdec-1。对Tafel值的进一步分析证实m-Pt@MoS2样品确实遵循VT反应机理,与理论发现保持一致。这项研究提供了对协同机制的深刻理解,为设计新型先进催化剂铺平了道路。
    As cost-effective catalysts, platinum (Pt) single-atom catalysts (SACs) have attracted substantial attention. However, most studies indicate that Pt SACs in acidic hydrogen evolution reaction (HER) follow the slow Volmer-Heyrovsky (VH) mechanism instead of the fast kinetic Volmer-Tafel (VT) pathway. Here, this work propose that the VH mechanism in Pt SACs can be switched to the faster VT pathway for efficient HER by correlating Pt single atoms (SAs) with Pt clusters (Cs). Our calculations reveal that the correlation between Pt SAs and Cs significantly impacts the electronic structure of exposed Pt atoms, lowering the adsorption barrier for atomic hydrogen and enabling a faster VT mechanism. To validate these findings, this work purposely synthesize three catalysts: l-Pt@MoS2, m-Pt@MoS2 and h-Pt@MoS2 with low, moderate, and high Pt-loading, having different distributions of Pt SAs and Cs. The m-Pt@MoS2 catalyst with properly correlating Pt SAs and Cs exhibits outstanding performance with an overpotential of 47 mV and Tafel slope of 32 mV dec-1. Further analysis of the Tafel values confirms that the m-Pt@MoS2 sample indeed follows the VT reaction mechanism, aligning with the theoretical findings. This study offers a deep understanding of the synergistic mechanism, paving a way for designing novel-advanced catalysts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中性条件下的电催化对于利用丰富的废水或海水资源制氢具有吸引力。固定在载体上的单原子催化剂(SAC)被认为是电催化研究中最有前途的策略之一。虽然它们在碱性或酸性条件下主要表现出析氢反应(HER)电催化的突破活性和选择性,在中立媒体上,很少有SAC报道她。在这里,我们报告了一种简单的策略,通过诱导Mo物种和超低的单原子Pt负载来定制NiFeLDH上的水解离活性位点。缺陷的NiFeMoLDH(V-NiFeMoLDH)在1M磷酸盐缓冲溶液中在10mAcm-2下显示出89mV的超电势,具有HER活性。蚀刻后诱导的Mo物种和转化的NiO/Ni相显著增加了电子电导率和催化活性位点。通过恒电位极化调制锚定在V-NiFeMoLDH上的超低单原子Pt,可以实现进一步的增强。在10mAcm-2时获得低至37mV的电势,并且在110小时内具有明显的长期耐久性,在中性介质中超越其结晶LDH材料和大多数HER催化剂。实验和密度泛函理论计算结果表明,Mo/SAsPt和相变为NiFeLDH的协同效应降低了水解离过程的动能势垒,促进了H*转化,从而加速了中性HER。
    Electrocatalysis in neutral conditions is appealing for hydrogen production by utilizing abundant wastewater or seawater resources. Single-atom catalysts (SACs) immobilized on supports are considered one of the most promising strategies for electrocatalysis research. While they have principally exhibited breakthrough activity and selectivity for the hydrogen evolution reaction (HER) electrocatalysis in alkaline or acidic conditions, few SACs were reported for HER in neutral media. Herein, we report a facile strategy to tailor the water dissociation active sites on the NiFe LDH by inducing Mo species and an ultralow single atomic Pt loading. The defected NiFeMo LDH (V-NiFeMo LDH) shows HER activity with an overpotential of 89 mV at 10 mA cm-2 in 1 M phosphate buffer solutions. The induced Mo species and the transformed NiO/Ni phases after etching significantly increase the electron conductivity and the catalytic active sites. A further enhancement can be achieved by modulating the ultralow single atom Pt anchored on the V-NiFeMo LDH by potentiostatic polarization. A potential as low as 37 mV is obtained at 10 mA cm-2 with a pronounced long-term durability over 110 h, surpassing its crystalline LDH materials and most of the HER catalysts in neutral medium. Experimental and density functional theory calculation results have demonstrated that the synergistic effects of Mo/SAs Pt and phase transformation into NiFe LDH reduce the kinetic energy barrier of the water dissociation process and promote the H* conversion for accelerating the neutral HER.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    合理设计广谱光催化剂以获取整个可见光区域的光子并增强太阳能转换是研究人员的“圣杯”,但仍然是一个具有挑战性的问题。在这里,基于常见的聚合氮化碳(PCN),为了解决这一挑战,构建了包含等离子体激元Au纳米颗粒(NP)和具有不同功能的原子分散的Pt单原子(PtSA)的混合助催化剂体系。对于双助催化剂装饰的PCN(PtSAs-Au2.5/PCN),PCN在紫外线和短波长可见光下被光激发以产生电子,协同的AuNP和PtSA不仅通过肖特基结和金属支撑键加速电荷分离和转移,而且还充当H2析出的助催化剂。此外,AuNP由于其局部表面等离子体共振而吸收长波长可见光,并且相邻的PtSA通过直接电子转移效应捕获等离子体激元热电子以放出H2。因此,PtSAs-Au2.5/PCN表现出优异的广谱光催化H2析出活性,在420nm处H2析出速率为8.8mmolg-1h-1,在550nm处H2析出速率为264μmolg-1h-1,远高于Au2.5/PCN和PtSAs-PCN,分别。该工作为设计用于能量转化反应的广谱光催化剂提供了新的策略。
    Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a \"holy grail\" for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs-Au2.5/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H2 evolution. Furthermore, the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance, and the adjacent PtSAs trap the plasmonic hot-electrons for H2 evolution via direct electron transfer effect. Consequently, the PtSAs-Au2.5/PCN exhibits excellent broad-spectrum photocatalytic H2 evolution activity with the H2 evolution rate of 8.8 mmol g-1 h-1 at 420 nm and 264 μmol g-1 h-1 at 550 nm, much higher than that of Au2.5/PCN and PtSAs-PCN, respectively. This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    实现所需的Pt/TiO2催化剂的高原子利用率和低成本是室温HCHO氧化的主要挑战。这里,通过在TiO2-纳米片组装的分层球体(Pt1/TiO2-HS)上的丰富氧空位锚定稳定的Pt单原子的策略旨在消除HCHO。对于长期运行,在相对湿度(RH)>50%时,在Pt1/TiO2-HS上实现了优越的HCHO氧化活性和CO2产率(〜100%CO2产率)。我们将出色的HCHO氧化性能归因于锚定在有缺陷的TiO2-HS表面上的稳定的孤立的Pt单原子。Pt1/TiO2-HS表面上的Ptδ+通过形成Pt-O-Ti键与载体具有容易的强烈电子转移,有效驱动HCHO氧化。进一步原位HCHO-DRIFTS揭示了二甲醛(DOM)和HCOOH/HCOO-中间体通过活性OH-和Pt1/TiO2-HS表面上的吸附氧进一步降解,分别。这项工作可能会为下一代用于室温下高效催化HCHO氧化的先进催化材料铺平道路。
    Achieving high atomic utilization and low cost of desirable Pt/TiO2 catalysts is a major challenge for room temperature HCHO oxidation. Here, the strategy of anchoring stable Pt single atoms by abundant oxygen vacancies over TiO2-nanosheet-assembled hierarchical spheres (Pt1/TiO2-HS) was designed to eliminate HCHO. A superior HCHO oxidation activity and CO2 yield (∼100% CO2 yield) at relative humidity (RH) > 50% over Pt1/TiO2-HS is achieved for long-term run. We attribute the excellent HCHO oxidation performance to the stable isolated Pt single atoms anchored on the defective TiO2-HS surface. The Ptδ+ on the Pt1/TiO2-HS surface has a facile intense electron transfer with the support by forming Pt-O-Ti linkages, driving HCHO oxidation effectively. Further in situ HCHO-DRIFTS revealed that the dioxymethylene (DOM) and HCOOH/HCOO- intermediates were further degraded via active OH- and adsorbed oxygen on the Pt1/TiO2-HS surface, respectively. This work may pave the way for the next generation of advanced catalytic materials for high-efficiency catalytic HCHO oxidation at room temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铂是析氢反应(HER)性能最好的催化剂之一。然而,高成本和稀缺性严重阻碍了Pt电催化剂的大规模应用。因此,构建高度分散的超小型铂金实体是提高铂利用率和质量活动的非常有效的策略,并降低成本。在这里,由Pt单原子的混合物组成的高度分散的Pt实体,集群,在介孔N掺杂碳纳米球上合成纳米颗粒。Pt单原子的存在,集群,和纳米粒子通过结合其他像差校正环形暗场扫描透射电子显微镜来证明,X射线吸收光谱,和电化学CO剥离。最好的催化剂表现出优异的几何和PtHER质量活性,分别比商业Pt/C参考和负载在具有相似Pt负载量的无孔N掺杂碳纳米纤维上的Pt催化剂高≈4和26倍。值得注意的是,在优化几何Pt电极负载后,最佳催化剂表现出超高的Pt和催化剂质量活性(-50mV时,为56±3Amg-1Pt和11.7±0.6Amg-1Cat可逆氢电极),分别比迄今为止报道的Pt单原子和簇基催化剂的最高Pt和催化剂质量活性高约1.5和58倍。
    Platinum is one of the best-performing catalysts for the hydrogen evolution reaction (HER). However, high cost and scarcity severely hinder the large-scale application of Pt electrocatalysts. Constructing highly dispersed ultrasmall Platinum entities is thereby a very effective strategy to increase Pt utilization and mass activities, and reduce costs. Herein, highly dispersed Pt entities composed of a mixture of Pt single atoms, clusters, and nanoparticles are synthesized on mesoporous N-doped carbon nanospheres. The presence of Pt single atoms, clusters, and nanoparticles is demonstrated by combining among others aberration-corrected annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and electrochemical CO stripping. The best catalyst exhibits excellent geometric and Pt HER mass activity, respectively ≈4 and 26 times higher than that of a commercial Pt/C reference and a Pt catalyst supported on nonporous N-doped carbon nanofibers with similar Pt loadings. Noteworthily, after optimization of the geometrical Pt electrode loading, the best catalyst exhibits ultrahigh Pt and catalyst mass activities (56 ± 3 A mg-1 Pt and 11.7 ± 0.6 A mg-1 Cat at -50 mV vs. reversible hydrogen electrode), which are respectively ≈1.5 and 58 times higher than the highest Pt and catalyst mass activities for Pt single-atom and cluster-based catalysts reported so far.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号