Protein-coding transcripts

  • 文章类型: Journal Article
    在原始人中,包括智人,尿酸是嘌呤分解代谢的最终产物。相比之下,其他胎盘哺乳动物通过尿酸氧化酶(尿酸酶)等酶将尿酸进一步降解为(S)-尿囊素,HIU水解酶(HIUase),和OHCU脱羧酶.一些生物,像青蛙和鱼,将(S)-尿囊素水解为尿囊酸,并最终水解为(S)-脲基乙醇酸酯和尿素,而海洋无脊椎动物将尿素转化为铵。在智人中,尿酸酶基因的突变导致选择压力降低,以维持编码嘌呤分解代谢途径其他酶的基因的完整性,导致尿酸积累。高尿酸血症,由于这种积累,与痛风有关,心血管疾病,糖尿病,和先兆子痫.许多常用的药物,比如阿司匹林,还可以增加尿酸水平。尽管在智人中明显不存在这些酶,似乎有尿酸酶(UOX)的转录本产生,HIUase(URAHP),OHCU脱羧酶(URAD),和尿囊酶(ALLC)。虽然一些URAHP转录本被归类为长链非编码RNA(lncRNAs),URAD和ALLC产生蛋白质编码转录物。鉴于这些转录本存在于各种组织中,我们假设它们可能在调节嘌呤分解代谢和高尿酸血症相关疾病的发病机制中起作用。在这里,我们对H.sapiens嘌呤分解代谢的独特方面进行了重点研究,尿酸酶基因突变的影响,以及相关转录本的潜在调节作用。这些发现为高尿酸血症及其相关疾病的研究和治疗方法开辟了新的途径。
    In hominids, including Homo sapiens, uric acid is the end product of purine catabolism. In contrast, other placental mammals further degrade uric acid to (S)-allantoin by enzymes such as urate oxidase (uricase), HIU hydrolase (HIUase), and OHCU decarboxylase. Some organisms, such as frogs and fish, hydrolyze (S)-allantoin to allantoate and eventually to (S)-ureidoglycolate and urea, while marine invertebrates convert urea to ammonium. In H. sapiens, mutations in the uricase gene led to a reduction in the selective pressure for maintaining the integrity of the genes encoding the other enzymes of the purine catabolism pathway, resulting in an accumulation of uric acid. The hyperuricemia resulting from this accumulation is associated with gout, cardiovascular disease, diabetes, and preeclampsia. Many commonly used drugs, such as aspirin, can also increase uric acid levels. Despite the apparent absence of these enzymes in H. sapiens, there appears to be production of transcripts for uricase (UOX), HIUase (URAHP), OHCU decarboxylase (URAD), and allantoicase (ALLC). While some URAHP transcripts are classified as long non-coding RNAs (lncRNAs), URAD and ALLC produce protein-coding transcripts. Given the presence of these transcripts in various tissues, we hypothesized that they may play a role in the regulation of purine catabolism and the pathogenesis of diseases associated with hyperuricemia. Here, we specifically investigate the unique aspects of purine catabolism in H. sapiens, the effects mutations of the uricase gene, and the potential regulatory role of the corresponding transcripts. These findings open new avenues for research and therapeutic approaches for the treatment of hyperuricemia and related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经发育障碍(NDD)被认为是突触病变,因为它们是由于发育过程中神经元连接的异常。DLG2是一个涉及突触功能的基因;由于很少有病例被彻底描述,因此NDD中它的表型效应被低估了。我们报告了8例涉及DLG2的11q14.1失衡患者,通过准确的神经精神病学数据收集,强调了其对临床表现的潜在影响及其对NDD合并症的贡献。DLG2是11q14.1中的一个非常大的基因,延伸超过2.172Mb,具有选择性剪接,可产生许多在脑组织中差异表达的同种型。对每个患者的改变的转录物进行彻底的生物信息学分析。该基因同工型的不同表达谱及其对关键大脑结构中兴奋性-抑制性平衡的影响可能导致与DLG2改变相关的表型变异性。对患者的进一步研究将有助于丰富临床和神经发育发现,并阐明与NDD相关的分子机制。
    Neurodevelopmental disorders (NDDs) are considered synaptopathies, as they are due to anomalies in neuronal connectivity during development. DLG2 is a gene involved insynaptic function; the phenotypic effect of itsalterations in NDDs has been underestimated since few cases have been thoroughly described.We report on eight patients with 11q14.1 imbalances involving DLG2, underlining its potential effects on clinical presentation and its contribution to NDD comorbidity by accurate neuropsychiatric data collection. DLG2 is a very large gene in 11q14.1, extending over 2.172 Mb, with alternative splicing that gives rise to numerous isoforms differentially expressed in brain tissues. A thorough bioinformatic analysis of the altered transcripts was conducted for each patient. The different expression profiles of the isoforms of this gene and their influence on the excitatory-inhibitory balance in crucial brain structures could contribute to the phenotypic variability related to DLG2 alterations. Further studies on patients would be helpful to enrich clinical and neurodevelopmental findings and elucidate the molecular mechanisms subtended to NDDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号