Protein synthesis

蛋白质合成
  • 文章类型: Journal Article
    疟原虫对抗疟药的耐药性是疟疾流行地区公共健康的严重威胁。靶向核心细胞过程如翻译的化合物是非常理想的,因为它们应该能够杀死肝脏和血液阶段形式的寄生虫,无论分子目标或机制。因此需要能够鉴定这些化合物的测定。最近,天然伯氏疟原虫肝期蛋白合成的特异性定量,以及支持寄生虫生长的肝癌细胞,通过o-炔丙基嘌呤霉素(OPP)标记的新生蛋白质组的自动共聚焦反馈显微镜来实现,但是这种成像模式在吞吐量上是有限的。这里,我们开发并验证了OPP测定的小型化高含量成像(HCI)版本,可提高通量,在部署此方法以筛选病原体盒之前。我们只确定了两个命中;两者都是寄生虫特异性喹啉-4-甲酰胺,以及血液和肝脏阶段蛋白质合成的临床候选物和已知抑制剂的类似物,DDD107498/卡米喹。我们进一步表明,这些化合物在其抗疟原虫和翻译抑制功效之间具有明显不同的关系。这些结果证明了伯氏疟原虫肝脏阶段OPPHCI测定的实用性和可靠性,在天然细胞环境中对疟原虫和人类蛋白质合成进行单孔定量,允许鉴定具有最高多阶段活性潜力的选择性疟原虫翻译抑制剂。
    Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be capable of killing parasites in their liver and blood stage forms, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis, as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits; both of which are parasite-specific quinoline-4-carboxamides, and analogs of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for the specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing the identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    代谢和mRNA翻译代表涉及调节基因表达和细胞生理学的关键步骤。作为细胞中最耗能的过程,mRNA翻译与细胞代谢严格相关,并与其同步。的确,代谢途径的几个mRNA在翻译水平上受到调节,导致翻译成为新陈代谢的协调者。另一方面,人们越来越认识到新陈代谢如何影响RNA生物学的几个方面。例如,代谢途径和代谢物直接控制翻译机制的选择性和效率,以及RNA的转录后修饰以微调蛋白质合成。始终如一,翻译控制和细胞代谢之间复杂相互作用的改变已成为人类疾病的关键轴。对此类事件的更好理解将预见人类疾病状态的创新治疗策略。
    Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    翻译启动是一个高度规范的,多步骤过程,这是有效和准确的蛋白质合成的关键。在细菌中,启动开始时,mRNA,启动因素,和专用引发剂fMet-tRNAfMet结合小(30S)核糖体亚基。肽基(P)位点中fMet-tRNAfMet的特异性结合是由起始因子IF2检查fMet部分和30S头部结构域检查tRNA反密码子茎中的三个保守G-C碱基对介导的。在16S核糖体RNA核苷酸A1339和G1338与tRNA碱基对G30-C40和G29-C41之间分别形成串联A-次要相互作用。用C-G交换G30-C40对tRNAfMet可以减少体外对非规范起始密码子CUG的歧视,提示反密码子茎的抓取和起始密码子的识别之间的串扰。这里,我们解决了大肠杆菌70S起始复合物的电子冷冻显微镜结构,该复合物包含与非规范CUG起始密码子配对的fMet-tRNAfMetG30-C40变体,在存在或不存在IF2和不可水解GTP类似物GDPCP的情况下,与包含与规范细菌起始密码子AUG配对的此tRNAfMet变体的70S起始复合物的结构一起,GUG,UUG。我们发现M1突变削弱了tRNAfMet与16S核苷酸A1339和G1338之间的A-minor相互作用,IF2增强了G1338与tRNA小沟的相互作用。这些结构表明核糖体识别fMet-tRNAfMet反密码子茎的轻微变化如何影响起始密码子选择。
    Translation initiation is a highly regulated, multi-step process which is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of E. coli 70S initiation complexes containing an fMet-tRNAfMet G30-C40 variant paired to noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact start codon selection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骨骼肌对运动的适应涉及增强代谢和收缩功能的各种表型变化。这些适应性反应的一个关键调节剂是AMPK的激活,这受到运动强度的影响。然而,对运动过程中AMPK激活机制的理解仍不完全.在这项研究中,我们利用体外模型研究了机械负荷对AMPK活化的影响及其与mTOR信号通路的相互作用.经过静态加载(SL)的肌肉细胞的蛋白质组学分析揭示了与RNA代谢相关的不同定量蛋白质改变。与5%和2%的较低强度以及对照相比,10%SL诱导最显著的响应。此外,10%SL抑制RNA和蛋白质合成,同时激活AMPK并抑制mTOR途径。我们还发现前mRNA剪接所必需的SRSF2,受AMPK和mTOR信号调节,which,反过来,SL以强度依赖性方式调节,在2%SL中表达最高。进一步检查显示,与对照相比,10%SL后ADP/ATP比率增加,并且SL诱导线粒体生物发生的变化。此外,海马测定结果表明10%SL增强线粒体呼吸。这些发现为细胞对机械负荷的反应提供了新的见解,并阐明了肌肉细胞中复杂的AMPK-mTOR调节网络。
    Skeletal muscle adaptation to exercise involves various phenotypic changes that enhance the metabolic and contractile functions. One key regulator of these adaptive responses is the activation of AMPK, which is influenced by exercise intensity. However, the mechanistic understanding of AMPK activation during exercise remains incomplete. In this study, we utilized an in vitro model to investigate the effects of mechanical loading on AMPK activation and its interaction with the mTOR signaling pathway. Proteomic analysis of muscle cells subjected to static loading (SL) revealed distinct quantitative protein alterations associated with RNA metabolism, with 10% SL inducing the most pronounced response compared to lower intensities of 5% and 2% as well as the control. Additionally, 10% SL suppressed RNA and protein synthesis while activating AMPK and inhibiting the mTOR pathway. We also found that SRSF2, necessary for pre-mRNA splicing, is regulated by AMPK and mTOR signaling, which, in turn, is regulated in an intensity-dependent manner by SL with the highest expression in 2% SL. Further examination showed that the ADP/ATP ratio was increased after 10% SL compared to the control and that SL induced changes in mitochondrial biogenesis. Furthermore, Seahorse assay results indicate that 10% SL enhances mitochondrial respiration. These findings provide novel insights into the cellular responses to mechanical loading and shed light on the intricate AMPK-mTOR regulatory network in muscle cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    秀丽隐杆线虫是人类健康和疾病的重要模式生物,为理解动物的基因表达和组织模式做出了基础贡献。现代基因表达研究中一个非常宝贵的工具是高分辨率核糖体结构的存在,尽管秀丽隐杆线虫没有这样的结构。在这里,我们提出了一个高分辨率的单粒子低温电子显微镜(cryoEM)重建和C.elegans核糖体的分子模型,揭示了一个显著流线型的动物核糖体。在秀丽隐杆线虫中核糖体结构的许多方面都是保守的,包括整体核糖体结构和环己酰亚胺的机制,而其他方面,如扩张段和eL28正在迅速演变。我们将uL5和uL23确定为在秀丽隐杆线虫中保守的组织特异性核糖体蛋白旁系表达的两个实例,这表明秀丽隐杆线虫核糖体在不同组织中存在差异。秀丽隐杆线虫核糖体结构将为未来的结构提供基础,生物化学,以及在这个重要的动物系统中翻译的遗传研究。
    Caenorhabditis elegans is an important model organism for human health and disease, with foundational contributions to the understanding of gene expression and tissue patterning in animals. An invaluable tool in modern gene expression research is the presence of a high-resolution ribosome structure, though no such structure exists for C. elegans. Here we present a high-resolution single-particle cryogenic electron microscopy (cryoEM) reconstruction and molecular model of a C. elegans ribosome, revealing a significantly streamlined animal ribosome. Many facets of ribosome structure are conserved in C. elegans, including overall ribosomal architecture and the mechanism of cycloheximide, while other facets such as expansion segments and eL28 are rapidly evolving. We identify uL5 and uL23 as two instances of tissue-specific ribosomal protein paralog expression conserved in Caenorhabditis, suggesting that C. elegans ribosomes vary across tissues. The C. elegans ribosome structure will provide a basis for future structural, biochemical, and genetic studies of translation in this important animal system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然转录后修饰在RNA生物学中的中心地位早已得到承认,绝大多数修饰位点的功能还有待发现。说明这一点,尚未为最高度保守的修饰之一分配离散的生物学角色,tRNA(m5U54)中位置54处的5-甲基尿苷。这里,我们揭示了m5U54对tRNA成熟和蛋白质合成的贡献。我们的质谱分析表明,缺乏在T环中安装m5U的酶的细胞(大肠杆菌中的TrmA,酿酒酵母中的Trm2)表现出改变的tRNA修饰模式。此外,m5U54缺陷型tRNA对防止体外易位的小分子脱敏。这一发现与我们的观察一致,即相对于野生型细胞,trm2Δ细胞生长和全转录组基因表达受易位抑制剂的干扰较小。我们的数据共同表明了一个模型,其中m5U54在蛋白质合成过程中充当tRNA成熟和核糖体易位的重要调节剂。
    While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA in Escherichia coli, Trm2 in Saccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells, trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转移RNA(tRNA)是必需的小型非编码RNA,可将基因组信息翻译成所有生命形式的蛋白质。tRNA的主要功能是将氨基酸结构单元带入核糖体用于蛋白质合成。在核糖体中,tRNA与信使RNA(mRNA)相互作用,以介导氨基酸按照遗传密码规则掺入到生长的多肽链中。遗传密码的准确解释需要tRNA携带与其反密码子身份匹配的氨基酸并解码mRNA上的正确密码子。这些步骤中的错误导致具有错误氨基酸的密码子的翻译(误译),影响信息从DNA到蛋白质的精确流动。由于误译而导致的突变蛋白的积累危害了蛋白稳定和细胞活力。然而,误译的概念正在演变,越来越多的证据表明,误译可以用作生存和适应环境条件的机制。在这次审查中,我们讨论了tRNA通过其与翻译因子的动态和复杂的相互作用在调节翻译保真度中的核心作用。我们总结了误译tRNA的最新发现,并描述了潜在的分子机制以及能够和促进误译的特定条件和环境。
    Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本文旨在提出一个独特的视角,强调能源之间的错综复杂的相互作用,膳食蛋白质,和氨基酸组成,强调他们在健康相关考虑方面的相互依赖。能量和蛋白质合成是生物过程的基础,对生命的维持和生物体的生长至关重要。
    结果:我们探索了能量代谢之间的复杂关系,蛋白质合成,监管机制,蛋白质来源,氨基酸可用性,和自噬,以阐明这些元素如何共同维持细胞稳态。我们强调了这种动态的相互作用在保护细胞生命方面的重要作用。
    结论:更深入地了解能量与蛋白质合成之间的联系对于理解基本的细胞过程至关重要。这种见解可能会在几个医学领域产生广泛的影响,比如营养,新陈代谢,和疾病管理。
    OBJECTIVE: This paper aims to present a unique perspective that emphasizes the intricate interplay between energy, dietary proteins, and amino acid composition, underscoring their mutual dependence for health-related considerations. Energy and protein synthesis are fundamental to biological processes, crucial for the sustenance of life and the growth of organisms.
    RESULTS: We explore the intricate relationship between energy metabolism, protein synthesis, regulatory mechanisms, protein sources, amino acid availability, and autophagy in order to elucidate how these elements collectively maintain cellular homeostasis. We underscore the vital role this dynamic interplay has in preserving cell life.
    CONCLUSIONS: A deeper understanding of the link between energy and protein synthesis is essential to comprehend fundamental cellular processes. This insight could have a wide-ranging impact in several medical fields, such as nutrition, metabolism, and disease management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号