Protein interaction network (PIN)

  • 文章类型: Journal Article
    共分馏质谱(CF-MS)使用生化分馏从细胞裂解物中分离和表征大分子复合物,而无需亲和标记或捕获。近年来,这已成为阐明各种生物样本中整体蛋白质-蛋白质相互作用网络的强大技术。这篇综述重点介绍了CF-MS实验工作流程的最新进展,包括机器学习指导分析,用于发现具有增强灵敏度的动态和高分辨率蛋白质相互作用景观,精度和吞吐量,能够更好地表征内源性蛋白质复合物。通过应对该领域的挑战和紧急机遇,这篇综述强调了CF-MS在促进我们对健康和疾病中功能性蛋白质相互作用网络的理解方面的转化潜力。
    Co-fractionation mass spectrometry (CF-MS) uses biochemical fractionation to isolate and characterize macromolecular complexes from cellular lysates without the need for affinity tagging or capture. In recent years, this has emerged as a powerful technique for elucidating global protein-protein interaction networks in a wide variety of biospecimens. This review highlights the latest advancements in CF-MS experimental workflows including machine learning-guided analyses, for uncovering dynamic and high-resolution protein interaction landscapes with enhanced sensitivity, accuracy and throughput, enabling better biophysical characterization of endogenous protein complexes. By addressing challenges and emergent opportunities in the field, this review underscores the transformative potential of CF-MS in advancing our understanding of functional protein interaction networks in health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    色素性视网膜炎(RP)是一种遗传性视网膜疾病,可导致光感受器杆状细胞萎缩。由于个别有缺陷的基因聚集在同一种疾病上,我们假设RP的所有因果基因都属于一个复杂的网络。为了探索这个假设,我们使用归因于RP的161个基因进行了基因连接分析,从视网膜信息网编译,RetNet。然后,我们检查了这些基因的蛋白质相互作用网络(PIN)。根据我们的假设,使用STRING,我们直接连接了公认的159个基因中的149个基因。为了发现PIN和十个未召回基因之间的关联,我们开发了一种算法来确定最佳候选基因,以将未调用的基因连接到PIN,并确定了10个这样的基因。我们认为这十个基因中的突变也可能导致RP;通过基于细胞位置和相关功能对已知的因果基因进行分析和分类来支持这一概念。在所有已记录的基因中成功建立PIN以及发现RP的新基因强烈表明在分子水平上导致疾病的相互联系。此外,我们的计算基因搜索协议可以帮助识别负责遗传疾病的基因和基因座,不限于RP。
    Retinitis Pigmentosa (RP) is a hereditary retinal disorder that causes the atrophy of photoreceptor rod cells. Since individual defective genes converge on the same disease, we hypothesized that all causal genes of RP belong in a complex network. To explore this hypothesis, we conducted a gene connection analysis using 161 genes attributed to RP, compiled from the Retinal Information Network, RetNet. We then examined the protein interaction network (PIN) of these genes. In line with our hypothesis, using STRING, we directly connected 149 genes out of the recognized 159 genes. To uncover the association between the PIN and the ten unrecalled genes, we developed an algorithm to pinpoint the best candidate genes to connect the uncalled genes to the PIN and identified ten such genes. We propose that mutations within these ten genes may also cause RP; this notion is supported by analyzing and categorizing the known causal genes based on cellular locations and related functions. The successful establishment of the PIN among all documented genes and the discovery of novel genes for RP strongly suggest an interconnectedness that causes the disease on the molecular level. In addition, our computational gene search protocol can help identify the genes and loci responsible for genetic diseases, not limited to RP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    NRF2(NFE2L2)是一种与60多种人类疾病相关的细胞保护转录因子,药物不良反应和治疗耐药。为了深入了解NRF2反应的复杂调节,对1962年预测的NRF2-伴侣相互作用进行了系统测试,以生成实验定义的高密度人类NRF2相互作用组。通过共免疫沉淀以及来自基于双发光的共免疫沉淀(DULIP)测定和活细胞荧光互相关光谱(FCCS)的定量数据的新颖整合,实现了46个新的NRF2伴侣的验证和条件分层。然后在基因编辑的功能丧失(NRF2-/-)和疾病相关的功能获得(NRF2T80K和KEAP1-/-)细胞系中评估新伴侣的功能影响。在调查的新伙伴中,>77%(17/22)的NRF2修饰反应,包括仅在疾病相关条件下表现出效果的合作伙伴。这种实验定义的二元NRF2相互作用组提供了复杂分子网络的新视野,这些复杂分子网络控制着健康和疾病中NRF2活性的调节和后果。
    NRF2 (NFE2L2) is a cytoprotective transcription factor associated with >60 human diseases, adverse drug reactions and therapeutic resistance. To provide insight into the complex regulation of NRF2 responses, 1962 predicted NRF2-partner interactions were systematically tested to generate an experimentally defined high-density human NRF2 interactome. Verification and conditional stratification of 46 new NRF2 partners was achieved by co-immunoprecipitation and the novel integration of quantitative data from dual luminescence-based co-immunoprecipitation (DULIP) assays and live-cell fluorescence cross-correlation spectroscopy (FCCS). The functional impact of new partners was then assessed in genetically edited loss-of-function (NRF2-/-) and disease-related gain-of-function (NRF2T80K and KEAP1-/-) cell-lines. Of the new partners investigated >77% (17/22) modified NRF2 responses, including partners that only exhibited effects under disease-related conditions. This experimentally defined binary NRF2 interactome provides a new vision of the complex molecular networks that govern the modulation and consequence of NRF2 activity in health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号