Presynaptic plasticity

  • 文章类型: Journal Article
    背景:突触的局部翻译对于快速重塑突触蛋白质组以维持长期可塑性和记忆很重要。虽然记忆相关的局部翻译的调节机制已在突触后/树突区域得到广泛阐明,没有直接证据表明轴突中的RNA结合蛋白(RBP)控制靶特异性mRNA的翻译,从而促进长时程增强(LTP)和记忆.我们先前报道,由胞质聚腺苷酸化元件结合蛋白2(CPEB2)控制的翻译对于突触后可塑性和记忆很重要。这里,我们调查了CPEB2是否调节轴突平移以支持突触前可塑性。
    方法:在具有CPEB2的泛神经元/神经胶质细胞或谷氨酸能神经元特异性敲除的小鼠中进行行为和电生理学评估。电记录海马Schaffer侧支(SC)-CA1和颞氨(TA)-CA1途径,以监测4列高频刺激引起的突触传递和LTP。RNA免疫沉淀,结合生物信息学分析,用于揭示与学习相关的CPEB2结合轴突RNA候选物,通过Western印迹和荧光素酶报告基因检测进一步验证。将表达Cre重组酶的腺相关病毒立体定向递送至TA回路的突触前或突触后区域以消融Cpeb2用于进一步的电生理研究。在微流体平台上培养的生化分离的突触小体和轴突化神经元用于测量轴突蛋白合成和FM4-64FX负载的突触小泡。
    结果:海马CA1神经元的电生理分析检测到CPEB2耗尽的SC和TA传入的异常兴奋性和囊泡释放概率,因此,我们将CPEB2免疫沉淀的转录组与成人皮质中学习诱导的轴突翻译组交叉比较,以鉴定可能受CPEB2调节的轴突靶标.我们验证了Slc17a6,编码囊泡谷氨酸转运蛋白2(VGLUT2),由CPEB2翻译上调。在表达VGLUT2的谷氨酸能神经元中CPEB2的条件性敲除会损害小鼠海马依赖性记忆的巩固。在VGLUT2主导的TA传入中,突触前特异性的Cpeb2消融足以减弱蛋白质合成依赖性LTP。此外,CPEB2缺乏症或环己酰亚胺阻断活性诱导的轴突Slc17a6翻译减少了含VGLUT2的突触小泡的可释放池。
    结论:我们确定了272个CPEB2结合转录本,其轴突翻译在学习后发生改变,并在CPEB2驱动的轴突合成VGLUT2和突触前翻译依赖性LTP之间建立了因果关系。这些发现扩展了我们对突触前室中与记忆相关的翻译控制机制的理解。
    BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity.
    METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles.
    RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles.
    CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触蛋白是高度丰富的突触前蛋白,通过突触小泡的聚集在神经传递和可塑性中起关键作用。突触蛋白III亚型通常在发育后下调,但是在海马苔藓纤维束中,它在成年期仍然存在。苔藓纤维束表达短期和长期可塑性的突触前形式,被认为是不同学习形式的基础。先前对该突触的突触蛋白的研究集中在突触蛋白同工型I和II。因此,关于突触在苔藓纤维可塑性中的作用的完整图片仍然缺失。这里,我们在缺乏所有突触素同工型的小鼠模型中,通过结合电生理场记录和透射电子显微镜研究了海马苔藓纤维束的突触前可塑性。我们发现,在雄性突触素三重敲除小鼠中,短期可塑性降低-即促进和强直性后增强作用降低-但长期增强作用增加。在超微结构层面,我们观察到来自敲除动物的苔藓纤维束中更分散的囊泡和更高密度的活性区。我们的结果表明,所有突触素同工型都是苔藓纤维突触短期和长期突触前可塑性的精细调节所必需的。意义陈述突触蛋白在突触前末端聚集囊泡,并在巨大的海马苔藓纤维束形成突触前可塑性。所有突触素同工型的缺失导致短期可塑性降低但长期可塑性增加。
    Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触前可塑性过程中神经递质释放的调节是大脑中各种形式的信息处理的基础。Munc13s通过其保守的C末端区域在释放中起着至关重要的作用,其中包含参与SNARE复杂程序集的MUN域,并控制多个突触前可塑性过程。Munc13s还具有可变的N末端区域,其在Munc13-1中包括参与短期可塑性的钙调蛋白结合(CaMb)结构域和形成抑制性同源二聚体的C2A结构域。通过与αRIM的锌指结构域形成异源二聚体来激活C2A结构域,提供与αRIM依赖的短期和长期可塑性的联系。然而,尚不清楚N端和C端区域的功能是如何整合的,部分原因是难以纯化包含两个区域的Munc13-1片段。我们首次描述了跨越其整个序列的Munc13-1片段的纯化,除了C2A和CaMb结构域之间的柔性区。我们表明,在脂质体融合测定中,该片段的活性远低于Munc13-1C末端区域,并且RIM2α锌指结构域与钙调蛋白一起强烈增强了其活性。NMR实验表明,C2A和CaMb结构域与MUN结构域结合,这些相互作用被RIM2αZF结构域和钙调蛋白缓解,分别。这些结果表明了一个模型,其中C2A和CaMb结构域与MUN结构域的相互作用抑制了Munc13-1促进SNARE复合物组装和神经递质释放的活性,而MUN结构域被αRIM和钙调蛋白释放。
    Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经胶质细胞在调节神经元兴奋性和突触强度中的新兴作用是神经科学中的一个不断发展的领域。近年来,神经胶质转运在稳态突触前可塑性中的关键作用已经得到强调,神经胶质来源的ATP作为关键贡献者出现.然而,对神经胶质非囊泡ATP释放途径以及ATP如何参与突触强度的调节知之甚少。这里,我们调查了神经元在慢性不活动时发生的功能变化和嘌呤能信号的作用,connexin43和pannexin1半通道在这个过程中。通过使用海马分离培养物,我们表明,阻断连接蛋白43和pannexin1半通道可以减少细胞外ATP的数量。此外,使用Fluo-4/AM进行的Ca2成像分析显示,阻断连接蛋白43,神经元P2X7Rs和pannexin1半通道可减少神经元中基础Ca2的量。在这些条件下,还证明了突触小泡池大小的显着损害。有趣的是,Panx1HC被阻断的救援实验表明,P2X7Rs激活后恢复了胞浆Ca2+的补偿性调节,这表明Panx1在P2X7Rs下游起作用。这些变化伴随着神经元通透性的调节,正如溴化乙锭吸收实验所揭示的那样。特别是,神经元P2X7Rs和pannexin1半通道的通透性在不活动24小时后增加。一起来看,我们发现了连接蛋白43依赖性ATP释放和神经元P2X7Rs和pannexin1半通道在通过调节神经元通透性调节突触前强度中的作用,Ca2进入神经元和突触小泡循环池的大小。
    The emerging role of glial cells in modulating neuronal excitability and synaptic strength is a growing field in neuroscience. In recent years, a pivotal role of gliotransmission in homeostatic presynaptic plasticity has been highlighted and glial-derived ATP arises as a key contributor. However, very little is known about the glial non-vesicular ATP-release pathway and how ATP participates in the modulation of synaptic strength. Here, we investigated the functional changes occurring in neurons upon chronic inactivity and the role of the purinergic signaling, connexin43 and pannexin1 hemichannels in this process. By using hippocampal dissociated cultures, we showed that blocking connexin43 and pannexin1 hemichannels decreases the amount of extracellular ATP. Moreover, Ca2+ imaging assays using Fluo-4/AM revealed that blocking connexin43, neuronal P2X7Rs and pannexin1 hemichannels decreases the amount of basal Ca2+ in neurons. A significant impairment in synaptic vesicle pool size was also evidenced under these conditions. Interestingly, rescue experiments where Panx1HCs are blocked showed that the compensatory adjustment of cytosolic Ca2+ was recovered after P2X7Rs activation, suggesting that Panx1 acts downstream P2X7Rs. These changes were accompanied by a modulation of neuronal permeability, as revealed by ethidium bromide uptake experiments. In particular, the permeability of neuronal P2X7Rs and pannexin1 hemichannels is increased upon 24 h of inactivity. Taken together, we have uncovered a role for connexin43-dependent ATP release and neuronal P2X7Rs and pannexin1 hemichannels in the adjustment of presynaptic strength by modulating neuronal permeability, the entrance of Ca2+ into neurons and the size of the recycling pool of synaptic vesicles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    突触前可塑性过程中神经递质释放的调节是大脑中各种形式的信息处理的基础。Munc13s通过其保守的C末端区域在释放中起着至关重要的作用,其中包含涉及SNARE复杂程序集的MUN域,并控制多个突触前塑性过程。Munc13s还具有可变的N末端区域,在Munc13-1中包括参与短期可塑性的钙调蛋白结合(CaMb)结构域和形成抑制性同源二聚体的C2A结构域。通过与αRIM的锌指结构域形成异源二聚体来激活C2A结构域,提供与αRIM依赖的短期和长期可塑性的联系。然而,尚不清楚N端和C端区域的功能是如何整合的,部分原因是难以纯化包含两个区域的Munc13-1片段。我们首次描述了跨越其整个序列的Munc13-1片段的纯化,除了C2A和CaMb结构域之间的柔性区域。我们表明,在脂质体融合测定中,该片段的活性远低于Munc13-1C末端区域,并且RIM2α锌指结构域与钙调蛋白一起强烈增强了其活性。NMR实验表明,C2A和CaMb结构域与MUN结构域结合,这些相互作用被RIM2αZF结构域和钙调蛋白缓解,分别。这些结果表明了一个模型,其中C2A和CaMb结构域与MUN结构域的相互作用抑制了Munc13-1促进SNARE复合物组装和神经递质释放的活性,而MUN结构域被αRIM和钙调蛋白释放。
    Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved SNARE complex assembly, and control multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元膜胆固醇含量的变化发生在发育和脑老化期间。对于突触活动是否调节神经元膜中的胆固醇水平以及这些变化是否影响神经元发育和功能,知之甚少。我们产生了转基因果蝇,该果蝇表达了PerfringolysinO毒素的胆固醇结合D4H结构域,并在突触活性增加后发现果蝇幼虫神经肌肉接头的突触前末端胆固醇水平升高。降低胆固醇会损害突触生长,并在很大程度上阻止活动依赖性突触生长。腺苷酸环化酶的突触前敲除表现为降低胆固醇引起的突触生长受损。此外,敲除腺苷酸环化酶和降低胆固醇的作用不是累加的,表明它们在同一途径中发挥作用。使用磷酸二酯酶活性降低的dunce突变体增加cAMP水平未能挽救这种受损的突触生长,表明胆固醇在cAMP的下游起作用。我们使用PKA传感器显示降低胆固醇水平会降低突触前PKA活性。总的来说,我们的结果表明,突触活动增强会增加突触前终末的胆固醇水平,这些变化可能会在活动依赖性生长过程中激活cAMP-PKA通路.
    Changes in cholesterol content of neuronal membranes occur during development and brain aging. Little is known about whether synaptic activity regulates cholesterol levels in neuronal membranes and whether these changes affect neuronal development and function. We generated transgenic flies that express the cholesterol-binding D4H domain of perfringolysin O toxin and found increased levels of cholesterol in presynaptic terminals of Drosophila larval neuromuscular junctions following increased synaptic activity. Reduced cholesterol impaired synaptic growth and largely prevented activity-dependent synaptic growth. Presynaptic knockdown of adenylyl cyclase phenocopied the impaired synaptic growth caused by reducing cholesterol. Furthermore, the effects of knocking down adenylyl cyclase and reducing cholesterol were not additive, suggesting that they function in the same pathway. Increasing cAMP levels using a dunce mutant with reduced phosphodiesterase activity failed to rescue this impaired synaptic growth, suggesting that cholesterol functions downstream of cAMP. We used a protein kinase A (PKA) sensor to show that reducing cholesterol levels reduced presynaptic PKA activity. Collectively, our results demonstrate that enhanced synaptic activity increased cholesterol levels in presynaptic terminals and that these changes likely activate the cAMP-PKA pathway during activity-dependent growth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在理解突触的分子可塑性变化如何与电路操作相交以定义行为状态方面,我们仍然面临着基本的差距。在这里,我们显示了两个保守的调节蛋白之间的拮抗作用,Spinophilin(Spn)和Syd-1控制果蝇的突触前长期可塑性和嗅觉记忆的维持。虽然Spn突变体在稳态挑战下无法触发纳米级活性区重塑,并且无法稳定地增强神经递质的释放,Syd-1的伴随减少挽救了所有这些缺陷。Spn/Syd-1拮抗作用集中在靠近F-肌动蛋白的活性区,F-肌动蛋白的遗传或急性药理解聚通过允许进入突触小泡释放位点来挽救Spn缺陷。在内在的蘑菇体神经元内,Spn/Syd-1拮抗作用特异性控制嗅觉记忆稳定,但不控制初始学习。因此,这种进化保守的蛋白质复合物控制行为相关的突触前长期可塑性,在哺乳动物的大脑中也观察到,但对于其分子机制和行为相关性仍然是神秘的。
    We still face fundamental gaps in understanding how molecular plastic changes of synapses intersect with circuit operation to define behavioral states. Here, we show that an antagonism between two conserved regulatory proteins, Spinophilin (Spn) and Syd-1, controls presynaptic long-term plasticity and the maintenance of olfactory memories in Drosophila. While Spn mutants could not trigger nanoscopic active zone remodeling under homeostatic challenge and failed to stably potentiate neurotransmitter release, concomitant reduction of Syd-1 rescued all these deficits. The Spn/Syd-1 antagonism converged on active zone close F-actin, and genetic or acute pharmacological depolymerization of F-actin rescued the Spn deficits by allowing access to synaptic vesicle release sites. Within the intrinsic mushroom body neurons, the Spn/Syd-1 antagonism specifically controlled olfactory memory stabilization but not initial learning. Thus, this evolutionarily conserved protein complex controls behaviorally relevant presynaptic long-term plasticity, also observed in the mammalian brain but still enigmatic concerning its molecular mechanisms and behavioral relevance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触前可塑性是神经递质释放的活动依赖性变化,在突触强度的动态调节中起关键作用。特别是,由环磷酸腺苷(cAMP)介导的突触前增强作用在动物中广泛可见,并被认为有助于学习和记忆。由于短期和长期形式的强大的突触前增强作用,海马苔藓纤维CA3锥体细胞突触已被用作模型。此外,来自大型苔藓纤维末端的直接突触前录音可以解剖增强机制。最近,超分辨率显微镜和闪光冷冻电子显微镜已经揭示了在纳米级增强过程中释放位点分子和突触小泡的定位,确定增强的分子机制。结合这些不断增长的知识,我们试图提出cAMP介导的突触前增强的潜在机制。
    Presynaptic plasticity is an activity-dependent change in the neurotransmitter release and plays a key role in dynamic modulation of synaptic strength. Particularly, presynaptic potentiation mediated by cyclic adenosine monophosphate (cAMP) is widely seen across the animals and thought to contribute to learning and memory. Hippocampal mossy fiber-CA3 pyramidal cell synapses have been used as a model because of robust presynaptic potentiation in short- and long-term forms. Moreover, direct presynaptic recordings from large mossy fiber terminals allow one to dissect the potentiation mechanisms. Recently, super-resolution microscopy and flash-and-freeze electron microscopy have revealed the localizations of release site molecules and synaptic vesicles during the potentiation at a nanoscale, identifying the molecular mechanisms of the potentiation. Incorporating these growing knowledges, we try to present plausible mechanisms underlying the cAMP-mediated presynaptic potentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用配对脉冲范式在大鼠海马切片中研究了肌动蛋白聚合诱导的突触前短期可塑性的调节。在用jasplakinolide灌注之前和期间,每30s以成对的脉冲刺激Schaffer络脉,刺激间隔为70ms,肌动蛋白聚合的活化剂。Jasplakinolide的应用导致CA3-CA1响应(增强)的幅度增加,并伴随着成对脉冲促进的减少,提示突触前修饰的诱导。Jasplakinolide诱导的增强作用取决于初始的成对脉搏率。这些数据表明jasplakinolide介导的肌动蛋白聚合变化增加了神经递质释放的可能性。不太典型的CA3-CA1突触反应,例如非常低的成对脉冲比(接近1甚至更低)或甚至成对脉冲抑制,受到不同的影响。因此,jasplakinolide引起第二个增强,但不是对配对刺激的第一反应,平均将成对脉冲比从0.8增加到1.0,提示jasplakinolide对促进配对脉冲抑制的机制有负面影响。总的来说,肌动蛋白聚合促进增强,尽管增强的模式根据初始突触特征而有所不同。我们得出的结论是,除了神经递质释放概率的增加,jasplakinolide诱导其他肌动蛋白聚合依赖性机制,包括那些参与配对脉冲抑制的人。
    Modulation of presynaptic short-term plasticity induced by actin polymerization was studied in rat hippocampal slices using the paired-pulse paradigm. Schaffer collaterals were stimulated with paired pulses with a 70-ms interstimulus interval every 30 s before and during perfusion with jasplakinolide, an activator of actin polymerization. Jasplakinolide application resulted in the increase in the amplitudes of CA3-CA1 responses (potentiation) accompanied by a decrease in the paired-pulse facilitation, suggesting induction of presynaptic modifications. Jasplakinolide-induced potentiation depended on the initial paired-pulse rate. These data indicate that the jasplakinolide-mediated changes in actin polymerization increased the probability of neurotransmitter release. Less typical for CA3-CA1 synapses responses, such as a very low paired-pulse ratio (close to 1 or even lower) or even paired-pulse depression, were affected differently. Thus, jasplakinolide caused potentiation of the second, but not the first response to the paired stimulus, which increased the paired-pulse ratio from 0.8 to 1.0 on average, suggesting a negative impact of jasplakinolide on the mechanisms promoting paired-pulse depression. In general, actin polymerization facilitated potentiation, although the patterns of potentiation differed depending on the initial synapse characteristics. We conclude that in addition to the increase in the neurotransmitter release probability, jasplakinolide induced other actin polymerization-dependent mechanisms, including those involved in the paired-pulse depression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阐明突触可塑性的不同组成部分如何动态地协调神经元网络中记忆获取和维护的不同阶段仍然是一个重大挑战。具体来说,在脊椎动物和无脊椎动物中广泛观察到调节突触前活动区(AZ)释放部位的功能和结构状态的可塑性过程,但它们的行为相关性仍不清楚。我们在这里提供的证据表明,突触前AZ释放位点蛋白的瞬时上调支持果蝇蘑菇体(MB)的厌恶嗅觉中期记忆。配对厌恶嗅觉调理后,AZ蛋白水平(ELKS-家族BRP/(m)unc13-家族释放因子Unc13A)随着MB-叶特异性动力学而增加数小时。凯尼恩牢房(KC,BRP的内在MB神经元)特异性敲除(KD)不会影响厌恶性嗅觉短期记忆(STM),但会强烈抑制厌恶性中期记忆(MTM)。对于AZ生物合成前体的转运至关重要的不同蛋白质(转运衔接子Aplip1/Jip-1;驱动蛋白马达IMAC/Unc104;小GTPaseArl8)也是形成厌恶性嗅觉MTM所必需的。与AZ蛋白的短暂增加一致,BRPKD不会干扰厌恶性嗅觉长期记忆的形成(LTM;即1天)。我们的数据表明,突触前AZ的重塑改善了配对厌恶调节后的MB电路,在几个小时的时间窗口中,显示令人厌恶的嗅觉记忆。
    Elucidating how the distinct components of synaptic plasticity dynamically orchestrate the distinct stages of memory acquisition and maintenance within neuronal networks remains a major challenge. Specifically, plasticity processes tuning the functional and also structural state of presynaptic active zone (AZ) release sites are widely observed in vertebrates and invertebrates, but their behavioral relevance remains mostly unclear. We here provide evidence that a transient upregulation of presynaptic AZ release site proteins supports aversive olfactory mid-term memory in the Drosophila mushroom body (MB). Upon paired aversive olfactory conditioning, AZ protein levels (ELKS-family BRP/(m)unc13-family release factor Unc13A) increased for a few hours with MB-lobe-specific dynamics. Kenyon cell (KC, intrinsic MB neurons)-specific knockdown (KD) of BRP did not affect aversive olfactory short-term memory (STM) but strongly suppressed aversive mid-term memory (MTM). Different proteins crucial for the transport of AZ biosynthetic precursors (transport adaptor Aplip1/Jip-1; kinesin motor IMAC/Unc104; small GTPase Arl8) were also specifically required for the formation of aversive olfactory MTM. Consistent with the merely transitory increase of AZ proteins, BRP KD did not interfere with the formation of aversive olfactory long-term memory (LTM; i.e., 1 day). Our data suggest that the remodeling of presynaptic AZ refines the MB circuitry after paired aversive conditioning, over a time window of a few hours, to display aversive olfactory memories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号