Polyplex

polyplex
  • 文章类型: Journal Article
    支化是聚合物的关键结构参数,会对物理化学性质产生深远的影响。已经证明,使用由阳离子聚合物构建的递送载体,分支是mRNA递送和转染的调节因子。但与其他聚合物特征如单体组成相比,聚合物分支对mRNA递送的影响仍然相对不足,疏水性,pKa,或终端组的类型。在这项研究中,我们在各种条件下研究了分支对聚(胺-共聚酯)(PACE)的物理化学性质及其在体内和体外mRNA转染中的效率的影响。合成了具有0至0.66的各种支化度的PACE聚合物,并系统地评估了它们的转染效率。我们观察到支化改善了复合物的稳定性,但降低了pH缓冲能力。因此,由于不同生理区室中的复合物所面临的挑战的差异,因此必须以递送途径特定的方式优化支化度(DB)。通过对体内外理化性质和mRNA转染的系统分析,这项研究强调了聚合物分支对核酸递送的影响。
    Branching is a key structural parameter of polymers, which can have profound impacts on physicochemical properties. It has been demonstrated that branching is a modulating factor for mRNA delivery and transfection using delivery vehicles built from cationic polymers, but the influence of polymer branching on mRNA delivery remains relatively underexplored compared to other polymer features such as monomer composition, hydrophobicity, pKa, or the type of terminal group. In this study, we examined the impact of branching on the physicochemical properties of poly(amine-co-esters) (PACE) and their efficiency in mRNA transfection in vivo and in vitro under various conditions. PACE polymers were synthesized with various degrees of branching ranging from 0 to 0.66, and their transfection efficiency was systemically evaluated. We observed that branching improves the stability of polyplexes but reduces the pH buffering capacity. Therefore, the degree of branching (DB) must be optimized in a delivery route specific manner due to differences in challenges faced by polyplexes in different physiological compartments. Through a systematic analysis of physicochemical properties and mRNA transfection in vivo and in vitro, this study highlights the influence of polymer branching on nucleic acid delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA技术已成为加速制造序列不可知疫苗的有希望的途径。对于活动,必须保护DNA疫苗并将其递送至正确的抗原呈递细胞。然而,必须仔细调整载体的理化特性,以增强与免疫细胞的相互作用,并产生足够的免疫反应以保护疾病。在这项研究中,我们设计了一系列基于聚(β-氨基酯)(PBAE)聚阳离子平台的基于聚合物的纳米载体,以研究表面聚(乙二醇)(PEG)密度对pDNA封装的作用,体外和体内的制剂特性和基因转染能力。我们通过合成非聚乙二醇化和聚乙二醇化的PBAE来实现这一目标,并生产含有这些PBAE的配方,和混合聚合复合物以调节表面PEG密度。在所有情况下,所有聚合物和共制剂都产生小的复合物纳米颗粒,几乎完全包封货物。尽管在HEK293T细胞中进行了高基因转染,在树突细胞中,仅完全PEG化和混合的制剂显示出显著高于阴性对照的报告基因表达。使用二价SARS-CoV-2pDNA疫苗的进一步体内研究表明,只有混合制剂会导致强烈的抗原特异性T细胞反应,然而,这并没有转化为血清抗体的存在,表明需要进一步研究以改善聚合物递送系统的免疫接种。
    DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of the vector must be carefully tuned to enhance interaction with immune cells and generate sufficient immune response for disease protection. In this study, we have engineered a range of polymer-based nanocarriers based on the poly(beta-amino ester) (PBAE) polycation platform to investigate the role that surface poly(ethylene glycol) (PEG) density has on pDNA encapsulation, formulation properties and gene transfectability both in vitro and in vivo. We achieved this by synthesising a non-PEGylated and PEGylated PBAE and produced formulations containing these PBAEs, and mixed polyplexes to tune surface PEG density. All polymers and co-formulations produced small polyplex nanoparticles with almost complete encapsulation of the cargo in all cases. Despite high gene transfection in HEK293T cells, only the fully PEGylated and mixed formulations displayed significantly higher expression of the reporter gene than the negative control in dendritic cells. Further in vivo studies with a bivalent SARS-CoV-2 pDNA vaccine revealed that only the mixed formulation led to strong antigen specific T-cell responses, however this did not translate into the presence of serum antibodies indicating the need for further studies into improving immunisation with polymer delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有效应对复杂病理状况的关键方面之一是在空间和时间上精确地递送所需的治疗化合物。因此,对核靶向运载系统的关注已经成为一项潜力巨大的有希望的战略,特别是在基因治疗和癌症治疗中。这里,我们探索了超分子纳米组装体作为载体的设计,以将特定化合物传递到细胞核,特别关注暴露核定位信号的聚合物和基于肽的载体。这样的纳米组装体旨在最大化细胞核内遗传和治疗剂的浓度,从而优化治疗结果,同时最小化脱靶效应。复杂的情况,包括细胞摄取,内体逃逸,和核易位,需要微调纳米载体的属性。首先,我们介绍了核导入的原理和核孔复合物的作用,揭示了纳米系统靶向核的策略。然后,我们概述了依赖于核定位以实现最佳活性的货物,因为它们的完整性和积累是设计合适的输送系统时需要考虑的关键参数。考虑到他们正处于研究的早期阶段,我们提出了各种货物负载的肽和聚合物纳米组装,促进核靶向,强调它们增强治疗反应的潜力。最后,我们简要讨论了更精确和有效的核输送的进一步进展。
    One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers\' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,阳离子聚合物载体已被视为递送核酸的有前途的方法。随着合成高分子化学的发展,我们可以控制化学结构和性质以增强基因传递的功效。在这里,一个容易的,成本效益高,并开发了可扩展的方法来合成聚乙二醇化的PDMAEMA聚合物(PEO-PDMAEMA-PEO),其中聚乙二醇化可以延长复合物在血流中的循环时间。合成了两种不同分子量的聚合物,和聚合物/eGFP聚合复合物的制备和表征。研究了聚合物的分子量与聚合物的物理化学性质(尺寸和ζ电位)之间的相关性。Lipofectamine2000,一种商业非病毒转染试剂,用作标准对照。分子量较高的PEO-PDMAEMA-PEO的转染效率比Lipofectamine2000略好,细胞毒性研究证明它可以作为安全的基因载体。我们认为PEO-PDMAEMA-PEO可以作为研究基因递送领域更多潜力的模型。
    In recent years, cationic polymer vectors have been viewed as a promising method for delivering nucleic acids. With the advancement of synthetic polymer chemistry, we can control chemical structures and properties to enhance the efficacy of gene delivery. Herein, a facile, cost-effective, and scalable method was developed to synthesize PEGylated PDMAEMA polymers (PEO-PDMAEMA-PEO), where PEGylation could enable prolonged polyplexes circulation time in the blood stream. Two polymers of different molecular weights were synthesized, and polymer/eGFP polyplexes were prepared and characterized. The correlation between polymers\' molecular weight and physicochemical properties (size and zeta potential) of polyplexes was investigated. Lipofectamine 2000, a commercial non-viral transfection reagent, was used as a standard control. PEO-PDMAEMA-PEO with higher molecular weight exhibited slightly better transfection efficiency than Lipofectamine 2000, and the cytotoxicity study proved that it could function as a safe gene vector. We believe that PEO-PDMAEMA-PEO could serve as a model to investigate more potential in the gene delivery area.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在微流体平台上的纳米颗粒合成提供了对本体合成的优异的再现性和控制。虽然已经有很多平台可以生产具有受控物理化学性质的纳米粒子(NPs),这样的平台通常在预定流量的窄范围内操作。流速限制限制了工业生产的向上可扩展性或探索性研究用途的向下可扩展性。这里,我们提出了一个通用的流量平台,可在广泛的流量范围(0.1-75mL/min)内运行,用于小规模的探索性研究和工业水平的NP合成,而不会损害混合能力。通过使用具有三角形微观结构的同轴流来产生涡流,可以获得宽范围的流速,而与流态(雷诺数)无关。该芯片合成了几种类型的NP,用于基因和蛋白质的递送,包括聚合复合物,脂质NPs,和固体聚合物NP通过自组装和沉淀,并在人T细胞中成功表达GFP质粒DNA。
    Nanoparticle synthesis on microfluidic platforms provides excellent reproducibility and control over bulk synthesis. While there have been plenty of platforms for producing nanoparticles (NPs) with controlled physicochemical properties, such platforms often operate in a narrow range of predefined flow rates. The flow rate limitation restricts either up-scalability for industrial production or down-scalability for exploratory research use. Here, we present a universal flow rate platform that operates over a wide range of flow rates (0.1-75 mL/min) for small-scale exploratory research and industrial-level synthesis of NPs without compromising the mixing capabilities. The wide range of flow rate is obtained by using a coaxial flow with a triangular microstructure to create a vortex regardless of the flow regime (Reynolds number). The chip synthesizes several types of NPs for gene and protein delivery, including polyplex, lipid NPs, and solid polymer NPs via self-assembly and precipitation, and successfully expresses GFP plasmid DNA in human T cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    调节和递送是mRNA疫苗设计的关键方面。在现代mRNA疫苗中,佐剂功能被整合到mRNA疫苗纳米颗粒中,允许抗原mRNA和佐剂在一个统一的共同递送,多合一配方。在这个公式中,许多mRNA疫苗利用mRNA和疫苗载体成分的免疫刺激特性,包括脂质和聚合物,作为佐剂。然而,精心设计是必要的,因为过度的佐剂和不适当的先天免疫信号的激活可以相反地阻碍疫苗接种效力并引发不良反应。mRNA疫苗还需要递送系统以在淋巴器官内的抗原呈递细胞(APC)中实现抗原表达。一些疫苗直接靶向淋巴器官中的APC,而其他人则依赖于服用mRNA疫苗后APC迁移到引流淋巴结。这篇综述探讨了目前对这些过程的机械理解,以及基于这种理解提高疫苗安全性和有效性的持续努力。
    Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA递送的载体必须是动态的,首先在递送到靶组织和穿过细胞膜屏障的过程中稳定和保护治疗性RNA,然后以生物活性形式释放货物。载体的化学空间范围从应用于脂质复合物和脂质纳米颗粒的小阳离子脂质,超过中等大小的序列定义的异种肽,应用于聚合物复合物和聚合物胶束中的大分子聚阳离子。这种观点突出了独特的病毒启发动态过程的发现,这些过程利用纳米颗粒与宿主的相互作用来实现有效的RNA递送。从主机方面来看,pH值的细微变化,离子浓度,氧化还原电位,特定蛋白质的存在,受体,或者酶是线索,RNA纳米载体必须通过包括可裂解键的动态化学设计来识别,可改变的物理化学性质,和超分子组装-拆卸过程,以响应交付过程中变化的生物微环境。
    Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合理设计在核酸纳米载体系统的现代发展中至关重要。随着聚合物材料作为脂类载体替代品的重要性日益凸显,理解它们的结构-功能关系变得至关重要。这里,我们介绍了一种新开发的基于Martini3力场的聚乙烯亚胺(PEI)粗粒度模型。该模型有助于真实大小的PEI分子的分子动力学模拟,以分子量为1.3、5、10和25kDa的分子为例,支化度在50.0和61.5%之间。我们使用该模型来研究小干扰RNA(siRNA)与PEI复合的热力学。我们的模拟强调了静电相互作用在络合过程中的关键作用。热力学分析显示,随着质子化的增加,结合亲和力更强,特别是在酸性(内体)pH下,与中性条件相比。此外,发现PEI的分子量是结合动力学的关键决定因素:较小的PEI分子紧密包裹siRNA,而较大的向外延伸,促进与多个RNA分子的复合物的形成。实验验证,包括等温滴定量热法和单分子荧光光谱法,与我们的计算预测吻合得很好。我们的发现不仅验证了PEI模型的保真度,而且强调了计算机数据在聚合物药物载体合理设计中的重要性。计算预测和实验验证之间的协同作用,正如这里所展示的,为药物载体设计提供了一种精致而精确的方法。
    Rational design is pivotal in the modern development of nucleic acid nanocarrier systems. With the rising prominence of polymeric materials as alternatives to lipid-based carriers, understanding their structure-function relationships becomes paramount. Here, we introduce a newly developed coarse-grained model of polyethylenimine (PEI) based on the Martini 3 force field. This model facilitates molecular dynamics simulations of true-sized PEI molecules, exemplified by molecules with molecular weights of 1.3, 5, 10, and 25 kDa, with degrees of branching between 50.0 and 61.5%. We employed this model to investigate the thermodynamics of small interfering RNA (siRNA) complexation with PEI. Our simulations underscore the pivotal role of electrostatic interactions in the complexation process. Thermodynamic analyses revealed a stronger binding affinity with increased protonation, notably in acidic (endosomal) pH, compared to neutral conditions. Furthermore, the molecular weight of PEI was found to be a critical determinant of binding dynamics: smaller PEI molecules closely enveloped the siRNA, whereas larger ones extended outward, facilitating the formation of complexes with multiple RNA molecules. Experimental validations, encompassing isothermal titration calorimetry and single-molecule fluorescence spectroscopy, aligned well with our computational predictions. Our findings not only validate the fidelity of our PEI model but also accentuate the importance of in silico data in the rational design of polymeric drug carriers. The synergy between computational predictions and experimental validations, as showcased here, signals a refined and precise approach to drug carrier design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非病毒基因递送系统通常设计为具有矛盾特性的载体系统,即细胞摄取前的足够稳定性和不稳定,以确保核酸被摄取到细胞后在转录过程中释放。我们先前报道了末端带有多臂PEG(maPEG-PLL)的聚(L-赖氨酸)形成的纳米纤维复合物,可通过maPEG之间的空间排斥抑制过度的DNA缩合,并在PCR扩增实验和无细胞基因表达系统中表现出有效的转录能力。在这项研究中,通过使用具有可在还原条件下破坏的二硫键(SS)的交联试剂在复合物内的PLL侧链之间引入交联来研究纳米纤维-复合物的可逆稳定而不损害有效转录能力。在硫酸葡聚糖和/或二硫苏糖醇的存在下,使用琼脂糖凝胶电泳和实时PCR评估复合物的稳定性和pDNA的反应性。我们成功地使用二硫代双(琥珀酰亚胺丙酸酯)(DSP)作为交联剂来可逆地稳定纳米纤维复合物。在使用培养细胞的实验中证实了可逆稳定的效果,DSP交联的复合物表现出优于聚乙烯亚胺复合物的基因表达,这是典型的聚合复合物。
    Non-viral gene delivery systems are typically designed vector systems with contradictory properties, namely sufficient stability before cellular uptake and instability to ensure the release of nucleic acid cargoes in the transcription process after being taken up into cells. We reported previously that poly-(L-lysine) terminally bearing a multi-arm PEG (maPEG-PLL) formed nanofiber-polyplexes that suppressed excessive DNA condensation via steric repulsion among maPEGs and exhibited effective transcriptional capability in PCR amplification experiments and a cell-free gene expression system. In this study, the reversible stabilization of a nanofiber-polyplex without impairing the effective transcriptional capability was investigated by introducing cross-links between the PLL side chains within the polyplex using a cross-linking reagent with disulfide (SS) bonds that can be disrupted under reducing conditions. In the presence of dextran sulfate and/or dithiothreitol, the stability of the polyplex and the reactivity of the pDNA were evaluated using agarose gel electrophoresis and real-time PCR. We succeeded in reversibly stabilizing nanofiber-polyplexes using dithiobis (succinimidyl propionate) (DSP) as the cross-linking reagent. The effect of the reversible stabilization was confirmed in experiments using cultured cells, and the DSP-crosslinked polyplexes exhibited gene expression superior to that of polyethyleneimine polyplexes, which are typical polyplexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于核酸的疗法正呈螺旋式上升。刺激响应聚合物,尤其是对pH有反应的,由于其有效递送核酸的能力而受到广泛关注。这些聚合物可以根据目标要求合成和改性,例如递送位点和核酸的性质。在这方面,由于各种合理的逃逸机制,聚合物-核酸复合物(多聚复合物)的内体逃逸机制仍然是一个令人感兴趣的话题。这篇综述描述了复合物的内体逃逸机制以及pH响应性聚合物的最新化学设计的最新进展。还讨论了酸解离常数的重要性(即,pKa)在设计新一代pH响应聚合物时,以及监测和量化内体逃逸行为的测定法。Further,在pKa预测和聚合物设计中解决了机器学习的使用,以找到用于pH响应的新型化学结构。这篇综述将有助于设计用于先进和有效核酸递送的新型pH响应聚合物。
    Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号