Platypus

鸭嘴兽
  • 文章类型: Journal Article
    鸭嘴兽(Ornithorhynchusanatinus)是一种半水生单调动物,在澳大利亚东部大陆和塔斯马尼亚的淡水生态系统中占有高度营养地位。鸭嘴兽不断暴露于人为污染物,包括全氟辛烷磺酸(PFOS)。这项研究调查了在过去两年半的时间里在新南威尔士州偶然收集的已故鸭嘴兽(八个野生;一个圈养)肝脏中的全氟辛烷磺酸浓度。全氟辛烷磺酸浓度有很大差异,范围从<1微克/千克到1200微克/千克。这项研究提出了关于鸭嘴兽中全氟辛烷磺酸污染的第一份报告,表明它们的全氟辛烷磺酸水平与水獭(Lutracanadensis)中的全氟辛烷磺酸水平大致相似,低于美国水貂(Mustelavison)中的全氟辛烷磺酸水平,两者在淡水系统中占据相似的生态位。这项研究引起了人们对全氟辛烷磺酸对鸭嘴兽健康影响的担忧。
    The platypus (Ornithorhynchus anatinus) is a semi-aquatic monotreme that occupies a high trophic position in the freshwater ecosystems of eastern mainland Australia and Tasmania. Platypuses are continuously exposed to anthropogenic contaminants including perfluorooctane sulfonate (PFOS). This study examined PFOS concentrations in the livers of deceased platypuses (eight wild; one captive) that were opportunistically collected across NSW over a two- and a half-year period. There was a large variation in PFOS concentrations, ranging from < 1 µg/kg to 1200 µg/kg. This study presents the first report of PFOS contamination in platypuses, revealing their PFOS levels are broadly similar to those found in river otters (Lutra canadensis) and lower than those in American mink (Mustela vison), both which occupy similar ecological niches in freshwater systems. This study raises concerns about the impact of PFOS on platypus health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异形性染色体(XY或ZW)存在性别之间和常染色体之间基因剂量失衡的问题。对于剂量补偿的需要一直被认为在脊椎动物中是关键的。然而,在单类哺乳动物和鸟类中mRNA丰度测量不相等的发现对此提出了质疑。这里,我们证明了鸭嘴兽雄性和雌性中X基因的mRNA水平不平衡,并且与组蛋白修饰的差异负荷相关。我们还观察到鸡中Z基因的不平衡转录本。令人惊讶的是,然而,我们发现两个物种的性别之间的蛋白质丰度比为1:1,表明剂量补偿的转录后层。我们得出的结论是,通过转录和转录后控制的组合,在鸡和鸭嘴兽(以及许多其他非脊椎动物)中保持性染色体输出。与性染色体剂量补偿的关键重要性一致。
    Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鸭嘴兽是世界上进化最独特的哺乳动物,具有几种宿主特异性的外寄生物和内寄生物。随着鸭嘴兽数量的减少,还应考虑将这些高保护优先的寄生虫与它们的魅力寄主一起保存。对鸭嘴兽保守易位进行了疾病风险分析(DRA),使用改进的简化方法,纳入寄生虫保护框架。DRA框架很少考虑寄生虫保护。相反,就寄生虫可能对宿主造成的潜在危害而言,它们通常被认为是肌动的。为了解决这个问题,先前提出的寄生虫保护框架已纳入现有简化的DRA方法。两个框架的合并很容易实现,尽管有机会进一步完善这一过程。这个DRA很重要,因为它是第一个对任何单调物种进行的,并实施平衡宿主健康和疾病风险与寄生虫保护的新兴方法。
    Platypuses are the world\'s most evolutionarily distinct mammal and have several host-specific ecto- and endoparasites. With platypus populations declining, consideration should also be given to preserving these high conservation priority parasites alongside their charismatic host. A disease risk analysis (DRA) was performed for a platypus conservation translocation, using a modified streamlined methodology that incorporated a parasite conservation framework. DRA frameworks rarely consider parasite conservation. Rather, parasites are typically considered myopically in terms of the potential harm they may cause their host. To address this, a previously proposed parasite conservation framework was incorporated into an existing streamlined DRA methodology. Incorporation of the two frameworks was achieved readily, although there is opportunity for further refinement of this process. This DRA is significant as it is the first performed for any monotreme species, and implements the emerging approach of balancing the health and disease risk of the host with parasite conservation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过脊椎动物胃窦胃和幽门括约肌(横向肌区域)的食物通过的酶分解和调节是一种保守了4.5亿年的特征。涉及刺猬的高度保守的信号通路支持所涉及的结构的发展,骨形态发生蛋白和无翼/Int-1(Wnt)蛋白家族。Monotremes是少数已经失去基于酸的消化的脊椎动物谱系之一,这与鸭嘴兽(Ornithorhynchusanatinus)和短喙针(Tachyglossusaculeatus)基因组中缺乏盐酸分泌和胃酶的基因是一致的。此外,这些物种具有独特的胃表型,都有截口和腹状胃窦和没有幽门的鸭嘴兽。这里,我们探索单调胃表型的遗传基础,使用最新的单调基因组(mOrnAna1。pri.v4和mTacAcu1)以及RNA-seq数据。我们发现通路成分通常是保守的,但令人惊讶的是,NK3homeobox2(Nkx3.2)在鸭嘴兽和echidna中均被假化。我们推测echidna谱系中Grem1和Bmp4序列的独特序列进化可能与其幽门样限制性相关,并且硬骨鱼和单调谱系中胃酸和胃大小基因型和表型的趋同损失可能是生态进化动力学的结果。这些发现反映了基因缺失对表型进化的影响,并进一步阐明了单胃解剖学和生理学的遗传控制。
    The enzymatic breakdown and regulation of food passage through the vertebrate antral stomach and pyloric sphincter (antropyloric region) is a trait conserved over 450 million years. Development of the structures involved is underpinned by a highly conserved signalling pathway involving the hedgehog, bone morphogenetic protein and Wingless/Int-1 (Wnt) protein families. Monotremes are one of the few vertebrate lineages where acid-based digestion has been lost, and this is consistent with the lack of genes for hydrochloric acid secretion and gastric enzymes in the genomes of the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) . Furthermore, these species feature unique gastric phenotypes, both with truncated and aglandular antral stomachs and the platypus with no pylorus. Here, we explore the genetic underpinning of monotreme gastric phenotypes, investigating genes important in antropyloric development using the newest monotreme genomes (mOrnAna1.pri.v4 and mTacAcu1) together with RNA-seq data. We found that the pathway constituents are generally conserved, but surprisingly, NK3 homeobox 2 (Nkx3.2) was pseudogenized in both platypus and echidna. We speculate that the unique sequence evolution of Grem1 and Bmp4 sequences in the echidna lineage may correlate with their pyloric-like restriction and that the convergent loss of gastric acid and stomach size genotypes and phenotypes in teleost and monotreme lineages may be a result of eco-evolutionary dynamics. These findings reflect the effects of gene loss on phenotypic evolution and further elucidate the genetic control of monotreme stomach anatomy and physiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    独立谱系的回归进化通常导致趋同的表型。几个硬骨鱼组显示胃的继发性损失,和四个胃基因,atp4a,atp4b,pgc,和pga2在胃(无胃)鱼中已被共同删除。对胃鱼类的基因型趋同分析表明,四个基因,slc26a9,kcne2,cldn18a,和vsig1,在四个主要群体的大多数胃鱼中被共同删除或假源性化。kcne2和vsig1也被删除或假发生在胃中的单鱼针和鸭嘴兽,分别。在棘鱼的胃里,这些基因在胃腺细胞或表面上皮细胞中表达。在某些胃硬骨鱼中保留了cldn18的同源物,但与胃物种相比,显示出增加的非同义替代。这些结果表明,在四个主要的胃鱼类群体中,在多个基因座处出现了新的趋同基因丢失,还有一个单一的基因缺失的针和鸭嘴兽。
    The regressive evolution of independent lineages often results in convergent phenotypes. Several teleost groups display secondary loss of the stomach, and four gastric genes, atp4a, atp4b, pgc, and pga2 have been co-deleted in agastric (stomachless) fish. Analyses of genotypic convergence among agastric fishes showed that four genes, slc26a9, kcne2, cldn18a, and vsig1, were co-deleted or pseudogenized in most agastric fishes of the four major groups. kcne2 and vsig1 were also deleted or pseudogenized in the agastric monotreme echidna and platypus, respectively. In the stomachs of sticklebacks, these genes are expressed in gastric gland cells or surface epithelial cells. An ohnolog of cldn18 was retained in some agastric teleosts but exhibited an increased non-synonymous substitution when compared with gastric species. These results revealed novel convergent gene losses at multiple loci among the four major groups of agastric fish, as well as a single gene loss in the echidna and platypus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    StephenL.Wood重新定义了鸭嘴兽,使其成员原产于美洲以外的领域,并将大多数新热带物种从该属中转移出来。我遇到了44个仍然存在的物种,虽然,这些都在这里治疗。总的来说,我报告49个新的通用作业,其中30是从鸭嘴兽转移出来的。我提出了22个新的同义词,其中八个是鸭嘴兽物种,与先前转移的物种同义。鸭嘴兽还剩下六个新热带物种,因为文中详述的原因。这些分类学行为影响核心plypodinae的11个新热带属中的8个的组成。以下物种是从鸭嘴兽Herbst转移的,1793:Cenocephalusdubosus(Schedl,1933)梳子。11月。,塞诺头法鲁斯·纽特兰卡特斯(Schedl,1972)梳子。11月。;Costaroplatusbarbosai(Schedl,1972)梳子。11月。,科斯塔罗普拉斯德维乌斯(谢德尔,1976)梳子。11月。,Costaroplatusmixtus(Schedl,1976)梳子。11月。,Costaroplatusroppai(Schedl,1978)梳子。11月。;双足象(Schedl,1935)梳子。11月。,Epiplatypuscarduus(Schedl,1936)梳子。11月。,盘鱼盘鱼(Schedl,1967)梳子。11月。,epipatypusgrandiporus(Schedl,1961)梳子。11月。,epiplatypusinscultus(Schedl,1967)梳子。11月。,大型食蟹猴(Chapuis,1865)梳子。11月。,穿孔虫(Schedl,1961)梳子。11月。,Epiplatypusprophinus(Schedl,1959)梳子。11月。,四spispinatus(Chapuis,1865)梳子。11月。,Epiplatypussallei(Chapuis,1865)梳子。11月。,Epiplatypussequius(Schedl,1935)梳子。11月。;Euplatypus侦探(Schedl,1976)梳子。11月。,Euplatypuserraticus(Schedl,1972)梳子。11月。,Euplypuslongulus(Chapuis,1865)梳子。11月。,EuplatypusperplexusBright,1972年梳子。11月。,异形鱼(Schedl,1933)梳子。11月。,Euplatypusvexans(Schedl,1972)梳子。11月。;巨蟹(Schedl,1976)梳子。11月。,巨形虫(Schedl,1970),巨盘(Schedl,1936)梳子。11月。,巨型鸭嘴兽(伍德,1971)梳子。11月。,巨蟹(Schedl,1976)梳子。11月。,巨大的鸭嘴兽(Schedl,1936)梳子。11月。,巨蟹血统(Schedl,1936)梳子。11月。,巨蟹paramonovi(Schedl,1972)梳子。11月。,Megaplatypusschedli(伍德,1966)梳子。11月。,巨型platypusvafer(Schedl,1972)梳子。11月。;Teloplatypuscaligatus(Schedl,1972)梳子。11月。Costaropplatusbidens(Schedl,1970)梳子。11月。和Costaroplatusdarlingtoni(Reichardt,1965)梳子。11月。是从巨兽伍德转移过来的,1993.Costaroplatusvonfaberi(Reichardt,1962)梳子。11月。是从桔梗木材转移过来的,1993.纹状体上的(Chapuis,1865)梳子。11月。,大鸭嘴兽语境(Schedl,1963)梳子。11月。,大鸭嘴兽装饰(Schedl,1936)梳子。11月。和巨蟹贵宾(Schedl,1936)梳子。11月。从EuplatypusWood中移除,1993.Epiplatypusornatus(Schedl,1936)梳子。11月。是从TeloplatypusWood转来的,1993.JamaicensisBright,1972年梳子。11月。,巨大的鸭嘴兽变色(布兰德福德,1896)梳子。11月。,巴西长尾猴(Nunberg,1959)梳子。11月。,Teloplatypusnudus(Schedl,1936)梳子。11月。和Teloplatypuspernudus(Schedl,1936)梳子。11月。是从EpiplatypusWood转移过来的,1993.科斯达罗普拉斯(Schedl,1936)梳子。11月。,是从CenocephalusChapuis转移过来的,1865.巨大的鸭嘴兽(布兰福德,1895)梳子。11月。和巨形兽(Schedl,1971)梳子。11月。是从苔丝瑟鲁斯·桑德斯那里转移过来的,1837.提出新的同义词如下:CenocephalusrugicollisSchedl,1952(=CenocephalusepistomalisWood,1966syn。11月。);施德尔剑术,1972年(=鸭嘴兽Schedl,1976年syn。11月。);剑术恢复古林-姆纳维尔,1838年(=剑术。montanusSchedl,1960syn。11月。);模拟苔丝,1936年(=鸭嘴兽Schedl,1961年syn。11月。);剑术脊柱布兰福德,1896年(=泰瑟海法,1936syn。11月。);Carinulatus(Chapuis,1865年)(=鸭嘴兽,1936syn。11月。);CostaroplatusshenefeltiNunberg(1963)(=鸭嘴兽,1966syn。11月。);Costaroplatusvonfaberi(Reichardt,1962)(=鸭嘴兽对流Schedl,1972syn。11月。);Epiplatypussallei(Chapuis,1865年)(=鸭嘴兽四角Schedl,1934syn。11月。和=鸭嘴兽丝状木材,1971syn。11月。);Euplypuslongulus(Chapuis,1865年)(=鸭嘴兽,1865syn。11月。=鸭嘴兽mulsantiChapuis,1865syn。11月。和=鸭嘴兽,1963syn。11月。);巨蟹种群(布兰德福德,1895)1977syn。11月。);巨兽durus(Schedl,1936年)(=鸭嘴兽Schedl,1976年syn。11月。);巨蟹镰刀(Chapuis,1865年)(=鸭嘴兽边缘,1865syn。11月。,=鸭嘴兽粮仓Schedl,1952年syn。11月。,和=鸭嘴兽obsitusSchedl,1976年syn。11月。);巨蟹病毒(Schedl,1936年)(=鸭嘴兽,1976年syn。11月。);Neotrachyostus缩写(Chapuis,1865年)(=鸭嘴兽,1865syn。11月。);Teloplatypusenixus(Schedl,1936年)(=鸭嘴兽间舍德尔,1978syn。11月。);Teloplatypusratzeburgi(Chapuis,1865)(=鸭嘴兽pallidipennisBlandford,1896syn。11月。).PlatypussimpliciformisWood,1966年Wood(1993)错误地将其转移给了Megaplatypus和Euplatypus;我建议将其保留在Megaplatypus中。鸭嘴兽属中剩下六个新热带物种,其地位不确定:鸭嘴兽,1865年;鸭嘴兽Schedl,1972年;Playpus四重奏布兰福德,1895年;鸭嘴兽Schedl,1963年;谢德尔鸭嘴兽,1936年;和鸭嘴兽,1965.这些分类学上的变化为将来对美国platypodinae的修订工作奠定了基础。
    Stephen L. Wood re-defined Platypus such that its members are native to realms outside of the Americas and transferred most Neotropical species out of that genus. I have come across 44 species that still remain, though, and these are treated here. In total, I report 49 new generic assignments, 30 of which are transfers out of Platypus. I propose 22 new synonymies, eight of which are Platypus species that are synonymized with previously transferred species. Six Neotropical species are left in Platypus, for reasons detailed in the text. These taxonomic acts affect the compositions of eight of the 11 Neotropical genera of core Platypodinae. The following species are transferred from Platypus Herbst, 1793: Cenocephalus dubiosus (Schedl, 1933) comb. nov., Cenocephalus neotruncatus (Schedl, 1972) comb. nov.; Costaroplatus barbosai (Schedl, 1972) comb. nov., Costaroplatus devius (Schedl, 1976) comb. nov., Costaroplatus mixtus (Schedl, 1976) comb. nov., Costaroplatus roppai (Schedl, 1978) comb. nov.; Epiplatypus bicaudatulus (Schedl, 1935) comb. nov., Epiplatypus carduus (Schedl, 1936) comb. nov., Epiplatypus complanus (Schedl, 1967) comb. nov., Epiplatypus grandiporus (Schedl, 1961) comb. nov., Epiplatypus insculptus (Schedl, 1967) comb. nov., Epiplatypus macroporus (Chapuis, 1865) comb. nov., Epiplatypus perforans (Schedl, 1961) comb. nov., Epiplatypus propinquus (Schedl, 1959) comb. nov., Epiplatypus quadrispinatus (Chapuis, 1865) comb. nov., Epiplatypus sallei (Chapuis, 1865) comb. nov., Epiplatypus sequius (Schedl, 1935) comb. nov.; Euplatypus detectus (Schedl, 1976) comb. nov., Euplatypus erraticus (Schedl, 1972) comb. nov., Euplatypus longulus (Chapuis, 1865) comb. nov., Euplatypus perplexus Bright, 1972 comb. nov., Euplatypus rugosifrons (Schedl, 1933) comb. nov., Euplatypus vexans (Schedl, 1972) comb. nov.; Megaplatypus asperatus (Schedl, 1976) comb. nov., Megaplatypus carinifer (Schedl, 1970), Megaplatypus durus (Schedl, 1936) comb. nov., Megaplatypus eversus (Wood, 1971) comb. nov., Megaplatypus gagates (Schedl, 1976) comb. nov., Megaplatypus irrepertus (Schedl, 1936) comb. nov., Megaplatypus lineaticornis (Schedl, 1936) comb. nov., Megaplatypus paramonovi (Schedl, 1972) comb. nov., Megaplatypus schedli (Wood, 1966) comb. nov., Megaplatypus vafer (Schedl, 1972) comb. nov.; Teloplatypus caligatus (Schedl, 1972) comb. nov. Costaroplatus bidens (Schedl, 1970) comb. nov. and Costaroplatus darlingtoni (Reichardt, 1965) comb. nov. are transferred from Megaplatypus Wood, 1993. Costaroplatus vonfaberi (Reichardt, 1962) comb. nov. is transferred from Platyphysus Wood, 1993. Epiplatypus striatus (Chapuis, 1865) comb. nov., Megaplatypus contextus (Schedl, 1963) comb. nov., Megaplatypus decorus (Schedl, 1936) comb. nov. and Megaplatypus dignatus (Schedl, 1936) comb. nov. are removed from Euplatypus Wood, 1993. Epiplatypus ornatus (Schedl, 1936) comb. nov. is transferred from Teloplatypus Wood, 1993. Euplatypus jamaicensis Bright, 1972 comb. nov., Megaplatypus discolor (Blandford, 1896) comb. nov., Teloplatypus brasiliensis (Nunberg, 1959) comb. nov., Teloplatypus nudus (Schedl, 1936) comb. nov. and Teloplatypus pernudus (Schedl, 1936) comb. nov. are transferred from Epiplatypus Wood, 1993. Costaroplatus ornatus (Schedl, 1936) comb. nov., is transferred from Cenocephalus Chapuis, 1865. Megaplatypus acutidens (Blandford, 1895) comb. nov. and Megaplatypus despectus (Schedl, 1971) comb. nov. are transferred from Tesserocerus Saunders, 1837. New synonymies are proposed as follows: Cenocephalus rugicollis Schedl, 1952 (= Cenocephalus epistomalis Wood, 1966 syn. nov.); Tesserocerus forcipatus Schedl, 1972 (= Platypus aplanatus Schedl, 1976 syn. nov.); Tesserocerus retusus Gurin-Mneville, 1838 (= Tesserocerus guerini ssp. montanus Schedl, 1960 syn. nov.); Tesserocerus simulatus Schedl, 1936 (= Platypus bilobus Schedl, 1961 syn. nov.); Tesserocerus spinax Blandford, 1896 (= Tesserocephalus forficula Schedl, 1936 syn. nov.); Costaroplatus carinulatus (Chapuis, 1865) (= Platypus umbrosus Schedl, 1936 syn. nov.); Costaroplatus shenefelti Nunberg (1963) (= Platypus abditulus Wood, 1966 syn. nov.); Costaroplatus vonfaberi (Reichardt, 1962) (= Platypus convexus Schedl, 1972 syn. nov.); Epiplatypus sallei (Chapuis, 1865) (= Platypus quadricaudatulus Schedl, 1934 syn. nov. and = Platypus filaris Wood, 1971 syn. nov.); Euplatypus longulus (Chapuis, 1865) (= Platypus dimidiatus Chapuis, 1865 syn. nov. = Platypus mulsanti Chapuis, 1865 syn. nov. and = Platypus pseudolongulus Schedl, 1963 syn. nov. ); Megaplatypus acutidens (Blandford, 1895) (= Tesserocerus alternantes Schedl, 1977 syn. nov.); Megaplatypus durus (Schedl, 1936) (= Platypus arcuatus Schedl, 1976 syn. nov.); Megaplatypus fuscus (Chapuis, 1865) (= Platypus marginatus Chapuis, 1865 syn. nov., = Platypus granarius Schedl, 1952 syn. nov., and = Platypus obsitus Schedl, 1976 syn. nov.); Megaplatypus irrepertus (Schedl, 1936) (= Platypus sulcipennis Schedl, 1976 syn. nov.); Neotrachyostus abbreviatus (Chapuis, 1865) (= Platypus concavus Chapuis, 1865 syn. nov.); Teloplatypus enixus (Schedl, 1936) (= Platypus interponens Schedl, 1978 syn. nov.); Teloplatypus ratzeburgi (Chapuis, 1865) (= Platypus pallidipennis Blandford, 1896 syn. nov.). Platypus simpliciformis Wood, 1966 had been transferred by Wood (1993) to both Megaplatypus and Euplatypus by mistake; I propose keeping it in Megaplatypus. Six Neotropical species are left in the genus Platypus with the status incertae sedis: Platypus armatus Chapuis, 1865; Platypus dorsalis Schedl, 1972; Playpus quadrilobus Blandford, 1895; Platypus squamifer Schedl, 1963; Platypus subaequalispinosus Schedl, 1936; and Platypus trispinosus Chapuis, 1965. These taxonomic changes prepare the foundations for future revisionary work on the American Platypodinae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    皮肤作为对环境的屏障的功能取决于表皮角质形成细胞分化为形成最外层皮肤层的高弹性角质细胞。许多编码角质细胞结构成分的基因聚集在表皮分化复合体(EDC)中,已在胎盘和有袋哺乳动物以及非哺乳动物四足动物中进行了描述。这里,我们分析了鸭嘴兽(Ornithorhynchusanatinus)和线虫(Tachyglossusaculeatus)的基因组,以确定哺乳动物基底进化枝中EDC的基因组成,单调。我们报告说,哺乳动物特异性的EDC基因亚家族编码小的富含脯氨酸的蛋白(SPRR)和晚期角化的包膜蛋白以及单拷贝的EDC基因,如包膜蛋白,在单通道中保守。表明它们起源于茎哺乳动物。Monotremes具有至少一个与聚丝团蛋白(FLG)组同源的基因,胎盘哺乳动物的FLG2和hornerin(HRNR),但是两个FLG都没有明确的一对一成对直系同源,FLG2或HRNR。Caspase-14,一种角质形成细胞分化相关的蛋白酶,涉及丝聚蛋白的加工,由至少3个基因拷贝编码.我们的结果揭示了单质表皮分化遗传调控的进化保守和进化枝特异性特征。
    The function of the skin as a barrier against the environment depends on the differentiation of epidermal keratinocytes into highly resilient corneocytes that form the outermost skin layer. Many genes encoding structural components of corneocytes are clustered in the epidermal differentiation complex (EDC), which has been described in placental and marsupial mammals as well as non-mammalian tetrapods. Here, we analyzed the genomes of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus) to determine the gene composition of the EDC in the basal clade of mammals, the monotremes. We report that mammal-specific subfamilies of EDC genes encoding small proline-rich proteins (SPRRs) and late cornified envelope proteins as well as single-copy EDC genes such as involucrin are conserved in monotremes, suggesting that they have originated in stem mammals. Monotremes have at least one gene homologous to the group of filaggrin (FLG), FLG2 and hornerin (HRNR) in placental mammals, but no clear one-to-one pairwise ortholog of either FLG, FLG2 or HRNR. Caspase-14, a keratinocyte differentiation-associated protease implicated in the processing of filaggrin, is encoded by at least 3 gene copies in the echidna. Our results reveal evolutionarily conserved and clade-specific features of the genetic regulation of epidermal differentiation in monotremes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    We describe three new species of Myoplatypus Wood, 1993: from Peru, Myoplatypus petrovi Kirkendall new species; from Honduras, M. quadricornis Kirkendall new species; from Nicaragua (M. nicaraguensis Kirkendall new species). We transfer Platypus biprorus Blandford, 1896 and Platypus sicarius Wood, 1971 into Myoplatypus, and we synonymize Platypus querceus Wood, 1971 with M. biprorus. The net result of these actions is a genus comprising nine tropical and one temperate American species. Males of all species are illustrated by photographs and a key to all species is provided. The collections reported here include the first South American records of Myoplatypus, a genus hitherto known only from North and Central America. Most Myoplatypus species are known from just one or a few collections and none of the tropical species are very widespread; only five tropical species have any known hosts (Quercus [Fagaceae] for three of them). The paucity of specimens could be because of peculiarities of biology that lead to them being under-collected (such as restriction to high elevations), but it also could be that they are narrow endemics, in which case these pinhole borer species deserve conservation attention. Nosotros describimos tres nuevas especies de Myoplatypus Wood, 1993: de Per, Myoplatypus petrovi Kirkendall espcie nueva; de Honduras, M. quadricornis Kirkendall espcie nueva; de Nicaragua, M. nicaraguensis Kirkendall espcie nueva. Platypus biprorus Blandford, 1896 y Platypus sicarius Wood, 1971 se transfieren a Myoplatypus, y Platypus querceus Wood, 1971 se sinonimiza con M. biprorus Blandford. El resultado neto de estas acciones es un gnero que consiste en nueve espcies tropicales y una templada. Los machos de todas las especies estn ilustrados con fotografas y se da una clave para todas las especies. Las colecciones reportadas aqu incluyen los primeros registros sudamericanos de Myoplatypus, un gnero hasta ahora conocido solo en Amrica del Norte y Amrica Central. La mayora de las especies de Myoplatypus se conocen a partir de solo una o unas pocas colecciones y ninguna de las especies tropicales est muy extendida; slo cinco especies tropicales tienen hospedadores conocidos (tres de ellos son robles). La escasez de especmenes podra deberse a algunas peculiaridades de la biologa que los llevan a una recoleccin insuficiente (como la restriccin a grandes alturas), pero tambin podra ser que sean endmicos estrechos, en cuyo caso estas especies de barrenadores merecen atencin de conservacin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于产卵等特征,产卵哺乳动物(单调)被认为是“原始”。cloaca,和不完整的家庭,所有这些都与爬行动物分享。两组单调,陆生线虫(Tachyglossidae)和半水生鸭嘴兽(Ornithorhynchidae),自从新生代出现以来,它们已经进化出高度不同的特征。这些进化差异,特别是包括不同的电感应和化学感应系统,适应特定物种栖息地条件的结果。迄今为止,很少有研究研究了针织石和鸭嘴兽的视觉适应。在本研究中,我们表明,在分子水平上,在二色性视觉感觉系统中,针织物和鸭嘴兽具有不同的光吸收光谱。我们分析了单色视蛋白的吸收光谱,长波长敏感视蛋白(LWS)和短波长敏感视蛋白2(SWS2)。LWS的最大吸光度波长(λmax)在短喙针(Tachyglossusaculeatus)中为570.2,在鸭嘴兽(Ornithorhynchusanatinus)中为560.6nm;在SWS2中,λmax为451.7和442.6nm,分别。因此,echidna彩色视觉的光谱范围比鸭嘴兽长10nm。自然选择分析表明,单色视蛋白的分子进化在功能上是保守的,这表明这些类群依赖于特定物种的色觉。为了了解色彩视觉在单调中的用法,我们在温暖的温度下进行了24小时的圈养echidas行为观察,并分析了所得的心电图。Echidnas显示出cethemeral活动和各种行为方式,例如进食,旅行,挖,和自我修饰没有光/暗环境的选择性。停止(小心)行为在黑暗条件下更频繁,这表明针剂可能更依赖于白天的视力和晚上的嗅觉。在约6000万年的单调进化过程中,色觉功能促进了动态适应和戏剧性的生态变化。圈养echidas中各种昼夜行为的组织图也为该标志性物种的栖息地保护和动物福利提供了相关信息,当地濒临灭绝。
    Egg-laying mammals (monotremes) are considered \"primitive\" due to traits such as oviparity, cloaca, and incomplete homeothermy, all of which they share with reptiles. Two groups of monotremes, the terrestrial echidna (Tachyglossidae) and semiaquatic platypus (Ornithorhynchidae), have evolved highly divergent characters since their emergence in the Cenozoic era. These evolutionary differences, notably including distinct electrosensory and chemosensory systems, result from adaptations to species-specific habitat conditions. To date, very few studies have examined the visual adaptation of echidna and platypus. In the present study, we show that echidna and platypus have different light absorption spectra in their dichromatic visual sensory systems at the molecular level. We analyzed absorption spectra of monotreme color opsins, long-wavelength sensitive opsin (LWS) and short-wavelength sensitive opsin 2 (SWS2). The wavelength of maximum absorbance (λmax) in LWS was 570.2 in short-beaked echidna (Tachyglossus aculeatus) and 560.6 nm in platypus (Ornithorhynchus anatinus); in SWS2, λmax was 451.7 and 442.6 nm, respectively. Thus, the spectral range in echidna color vision is ~ 10 nm longer overall than in platypus. Natural selection analysis showed that the molecular evolution of monotreme color opsins is generally functionally conserved, suggesting that these taxa rely on species-specific color vision. In order to understand the usage of color vision in monotremes, we made 24-h behavioral observations of captive echidnas at warm temperatures and analyzed the resultant ethograms. Echidnas showed cathemeral activity and various behavioral repertoires such as feeding, traveling, digging, and self-grooming without light/dark environment selectivity. Halting (careful) behavior is more frequent in dark conditions, which suggests that echidnas may be more dependent on vision during the day and olfaction at night. Color vision functions have contributed to dynamic adaptations and dramatic ecological changes during the ~ 60 million years of divergent monotreme evolution. The ethogram of various day and night behaviors in captive echidnas also contributes information relevant to habitat conservation and animal welfare in this iconic species, which is locally endangered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号