Piezocatalysis

压电催化
  • 文章类型: Journal Article
    使用在950°C下固态煅烧4小时制备铁电BaBi4Ti4O15。X射线衍射,拉曼光谱,和X射线光电子能谱被用来了解其微观结构和其他结构方面。粒径约<1.5μm。这种氧化物能够证明其染料降解性能所反映的压电催化和摩擦催化。该氧化物在2小时内显示约40%的压电催化活性,在12小时内显示约90%的摩擦催化活性。压电催化反应的速率常数为0.003min-1,摩擦催化反应的速率常数为0.169h-1。旋转速度也影响氧化物的摩擦催化活性。氧化物显示25%,90%,在300、500和700rpm下的摩擦催化活性分别为94%。这种材料在不同类型的机械能源和不同的机理下表现出显著的催化性能。
    Ferroelectric BaBi4Ti4O15 was prepared using solid-state calcination at 950 °C for four hours. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy were utilized to understand its microstructure and other structural aspects. Particle size was around < 1.5 µm. This oxide is able to demonstrate piezocatalysis and tribocatalysis as reflected in its dye degradation performance. This oxide showed piezocatalytic activity around 40% in 2 h and tribocatalytic activity around 90% in 12 h. The rate constant for the piezocatalytic reaction is 0.003 min-1 and for tribocatalytic reaction is 0.169 h-1. The rotation speed also affected the tribocatalytic activity of the oxide. Oxide showed 25%, 90%, and 94% tribocatalytic activity at 300, 500, and 700 rpm respectively. This material has demonstrated notable performance of catalysis under different types of mechanical energy sources and under different mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    压电催化,一种变革性的机械化学能量转换技术,在过去的十年中,因其在从水中析出氢等过程中的作用而受到相当大的关注。尽管在该领域取得了显著进展,挑战依然存在,特别是在有限的压电催化效率和需要非中心对称结构的材料的有限可用性的领域中。这里,通过阐明中空CaTiO3纳米立方体的压电催化性能,提出了开创性的贡献,具有名义上的非极性状态的中心对称材料。值得注意的是,CaTiO3纳米晶体在超声振动下表现出令人印象深刻的3.44mmolg-1h-1产氢速率,超越了公认的压电催化剂BaTiO3(2.23mmolg-1h-1)的性能。相比之下,商业CaTiO3纳米颗粒不表现出压电催化性能。中空CaTiO3纳米晶体的卓越性能归因于其晶体结构中{110}面上存在大量孪晶边界,这可以赋予CaTiO3显著的极化强度。将调查扩展到其他中心对称材料,例如SrZrO3和BaZrO3,实验结果也证明了它们从水中压电催化制氢的良好性能。这项研究强调了中心对称材料在压电催化中的巨大潜力。
    Piezocatalysis, a transformative mechanochemical energy conversion technique, has received considerable attention over the past decade for its role in processes such as hydrogen evolution from water. Despite notable progress in the field, challenges remain, particularly in the areas of limited piezocatalysis efficiency and limited availability of materials requiring a non-centrosymmetric structure. Here, a pioneering contribution is presented by elucidating the piezocatalytic properties of hollow CaTiO3 nanocuboids, a centrosymmetric material with a nominally nonpolar state. Remarkably, CaTiO3 nanocuboids exhibit an impressive hydrogen production rate of 3.44 mmol g-1 h-1 under ultrasonic vibrations, surpassing the performance of the well-established piezocatalyst BaTiO3 (2.23 mmol g-1 h-1). In contrast, commercial CaTiO3 nanoparticles do not exhibit piezocatalytic performance. The exceptional performance of hollow CaTiO3 nanocuboids is attributed to the abundance presence of twin boundaries on the {110} facet within its crystal structure, which can impart significant polarization strength to CaTiO3. Extending the investigation to other centrosymmetric materials, such as SrZrO3 and BaZrO3, the experimental results also demonstrate their commendable properties for piezocatalytic hydrogen production from water. This research underscores the significant potential of centrosymmetric materials in piezocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,开发了一种新型的压电修复系统,以修复被高含量的全氟烷基和多氟烷基物质共污染的实际土壤(PFAS,5725μg/kg土壤)和重金属(6455mg/kg土壤)。两个压电催化剂,MoS2/陶粒(MC)和Fe3O4-MoS2/陶粒(FMC),使用简单的水热共沉淀法合成。这两种材料用于在超声处理下处理土壤泥浆环境中的共污染土壤。FMC表现出明显高于MC的压电修复性能,其中91.6%的PFAS,97.8%的Cr6+离子和81%的总金属(Cr,Cu,FMC压电修复过程50分钟后,从土壤中去除Zn和Ni)。FMC还表现出易于从浆料相分离和优异的可重用性的优点。与MC相比,FMC中的Fe3O4-MoS2异质结可以稳定陶粒颗粒表面的MoS2颗粒,促进电子/空穴对的分离,加速电荷转移,因此提高了压电催化性能。电子自旋共振分析和自由基猝灭测试表明,•OH是导致PFAS降解的主要氧化自由基。在养分刺激下培养30天后,处理后土壤中的细菌数量和细菌群落结构可以基本恢复到初始状态。总的来说,这项研究不仅为土壤修复过程提供了深刻的见解,而且还提供了一种有效可靠的技术,用于同时净化土壤中的有机和金属污染物。
    In this study, a novel piezoremediation system was developed to remediate an actual soil co-polluted by high contents of per- and polyfluoroalkyl substances (PFAS, 5725 μg/kg soil) and heavy metals (6455 mg/kg soil). Two piezocatalysts, MoS2/ceramsite (MC) and Fe3O4-MoS2/ceramsite (FMC), were synthesized using a facile hydrothermal-coprecipitation method. These two materials were employed to treat the co-contaminated soil in soil slurry environment under sonication. FMC exhibited significantly higher piezoremediation performance than MC, wherein 91.6% of PFAS, 97.8% of Cr6+ ions and 81% of total metals (Cr, Cu, Zn and Ni) were removed from the soil after 50 min of the FMC piezoremediation process. FMC also exhibited the advantages of easy separation from the slurry phase and excellent reusability. In comparison with MC, the Fe3O4-MoS2 heterojunction in FMC can stabilize MoS2 particles on the surface of ceramsite granules, promote the separation of electron/hole pairs, accelerate charge transfer, therefore enhancing piezocatalytic performance. The electron spin resonance analysis and free radical quenching tests show that •OH was the dominant oxidative radical responsible for PFAS degradation. The count of bacteria and the bacterial community structure in the treated soil can be basically restored to the initial states after 30 days of incubation under nutrient stimulation. Overall, this study not only provides a deep insight on soil remediation process, but also offers an efficient and reliable technique for simultaneous decontamination of organic and metal pollutants in soil.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    压电光催化结合了光催化和压电效应,通过在光催化剂中产生内部电场来提高催化效率,改善载波分离和整体性能。这项研究提出了一种高性能的压电光催化剂,用于使用协同钛酸钡(BTO)-MXene复合材料进行高效染料降解。该复合材料是通过简单的方法合成的,将BTO纳米粒子的独特性质与MXene的高电导率相结合。结构和形态分析证实了复合材料的成功形成,在MXene表面上具有良好分散的BTO纳米颗粒。在紫外线照射和机械搅拌下,使用典型的染料溶液(罗丹明B:RhB)评估了复合材料的压电光催化活性。结果表明,与单个刺激(光催化为58.2%,压电催化为90分钟)相比,染料降解显着增强(压电光催化在15分钟内为90%),强调BTO和MXene之间的协同效应。增强的催化性能归因于有效的电荷分离和转移促进复合材料的结构,导致反应性物种产生增加和染料分子降解。此外,复合材料表现出优异的稳定性和可重用性,展示了其在废水处理中的实际应用潜力。总的来说,这项工作代表了设计高性能协同催化剂的有希望的策略,解决环境修复中对可持续解决方案的迫切需要。
    Piezo-photocatalysis combines photocatalysis and piezoelectric effects to enhance catalytic efficiency by creating an internal electric field in the photocatalyst, improving carrier separation and overall performance. This study presents a high-performance piezo-photocatalyst for efficient dye degradation using a synergistic barium titanate (BTO)-MXene composite. The composite was synthesized via a facile method, combining the unique properties of BTO nanoparticles with the high conductivity of MXene. The structural and morphological analysis confirmed the successful formation of the composite, with well-dispersed BTO nanoparticles on the MXene surface. The piezo-photocatalytic activity of the composite was evaluated using a typical dye solution (Rhodamine B: RhB) under ultraviolet irradiation and mechanical agitation. The results revealed a remarkable enhancement in dye degradation (90 % in 15 min for piezo-photocatalysis) compared to individual stimuli (58.2 % for photocatalysis and 95.8 % in 90 min for piezocatalysis), highlighting the synergistic effects between BTO and MXene. The enhanced catalytic performance was attributed to the efficient charge separation and transfer facilitated by the composite\'s structure, leading to increased reactive species generation and dye molecule degradation. Furthermore, the composite exhibited excellent stability and reusability, showcasing its potential for practical applications in wastewater treatment. Overall, this work represents a promising strategy for designing high-performance synergistic catalysts, addressing the pressing need for sustainable solutions in environmental remediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    机械化学构成了一个新兴的领域,研究在机械力下物质的化学和物理化学变化。它能够合成具有挑战性的材料,通过传统的热,光学,和电激活方法。此外,它减少了对有机溶剂的依赖,并为绿色化学提供了新的途径。今天,作为电化学的一个独特分支,光化学,和热化学,机械化学已成为与化学和材料科学交叉的研究领域。近年来,机械化学与受控自由基聚合的结合取得了快速进展,为聚合物科学提供新的视野。机械化学控制的自由基聚合(mechano-CRP)不仅促进高分子量聚合物的合成,而且能够精确控制聚合物链长和结构。为了减少强大机械力的副反应,在机械化学路线中从恶劣条件过渡到温和条件已被认为是主要进步之一。从这个角度来看,我们介绍了近年来控制自由基聚合的机械化学进展,旨在明确该研究方向的发展趋势,激发资深研究人员或新人思考该领域未来的发展方向。
    Mechanochemistry constitutes a burgeoning field that investigates the chemical and physicochemical alterations of substances under mechanical force. It enables the synthesis of materials which was challenging to access via conventional thermal, optical, and electrical activation methods. In addition, it diminishes reliance on organic solvents and provides a novel route for green chemistry. Today, as a distinct branch alongside electrochemistry, photochemistry, and thermochemistry, mechanochemistry has emerged as an intersected research field with chemistry and material science. In recent years, the combination of mechanochemistry with controlled radical polymerization has witnessed rapid advancement, providing new sights to polymer science. The mechanochemically controlled radical polymerization (mechano-CRP) not only facilitate the synthesis of polymers with high molecular weight but also enable precise control over polymer chain length and structure. To diminish the side reactions by the strong mechanical force, transitioning from harsh to mild conditions in mechanochemical routes has been recognized as one of the primary advancements. From this perspective, we introduce the progress of mechanochemistry in controlled radical polymerization in recent years, aim to clarify the development trend of this research direction and stimulate senior researchers or newcomers to contemplate the future direction of this field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    压电催化已成为过氧化氢生产的可持续替代方法。然而,目前高效压电催化剂的发展主要集中在那些具有高介电常数和有限催化活性的常规压电陶瓷氧化物上。因此,创新的方法来开发新的压电催化剂,特别是从这些优秀的顺电半导体是非常需要的。在这项工作中,通过采用可行的掺杂策略,在Ba2Nb2-xFexO6-δ双钙钛矿氧化物上产生了强大的压电性能,通常以稳定的顺电立方结构为特征。最佳的Fe掺杂不仅增强了双钙钛矿相,而且激发了从中心对称立方到压电四方相的相变,从而实现所需的压电性,并实现一系列有利的物理性质,包括氧化还原活性,阴离子缺陷的活性部位,减少带隙,并增加了自由电荷密度。所有这些都是提高压电催化活性的重要因素。因此,通过最佳Fe掺杂实现的Ba2NbFeO6-δ在大气和氧气吹扫条件下表现出优异的压电催化H2O2产率,分别为512和690µmolg-1h-1,分别,没有任何牺牲剂的存在。机理研究表明,水氧化和氧还原都参与了H2O2的产生,其中压电位不仅在促进电荷载流子分离和运输方面而且在调节能带结构以增强催化剂氧化还原容量方面起关键作用。本研究为新型压电催化剂的设计提供了一种可行且通用的策略,扩大了压电催化催化剂选择的窗口。
    Piezocatalysis has emerged as a sustainable alternative for hydrogen peroxide production. However, the current development of efficient piezocatalysts is predominantly focusing on those conventional piezoelectric ceramic oxides with high permittivity and limited catalytic activities. Therefore, innovative approaches to develop novel piezocatalysts in particular from these outstanding paraelectric semiconductors are highly required. In this work, by employing a feasible doping strategy, robust piezoelectric property is created on the Ba2Nb2-xFexO6-δ double perovskite oxides, typically characterized by a stable paraelectric cubic structure. Optimum Fe doping not only intensifies the double perovskite phase but also inspires a phase transition from a centrosymmetric cubic to a piezoelectric tetragonal phase, thereby achieving desirable piezoelectricity and enabling a series of favorable physical properties including redox activity, active sites of anion defects, reduced bandgap, and increased free charge density. All these are important factors to enhance piezocatalytic activity. As a result, Ba2NbFeO6-δ achieved by the optimum Fe doping demonstrated exceptional piezocatalytic H2O2 yield of 512 and 690 µmol g-1 h-1 under atmosphere and oxygen-purging conditions, respectively, without the presence of any sacrificial agents. Mechanistic investigations reveal that both water oxidation and oxygen reduction involve in the H2O2 production, wherein piezopotential plays a critical role not only in facilitating the charge carrier separation and transportation but also in modulating the band structure to enhance the catalyst redox capacity. This study offers a feasible and universal strategy for the design of novel piezocatalysts, expanding the windows for catalyst selection for piezocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    未经处理的废水含有危险的病原体,化学品,和污染物,构成严重的公共健康威胁。如今,对环保废水处理技术的需求不断增加。最近,基于压电材料的废水处理技术由于其无创性和快速性而引起了研究人员的极大兴趣。在这里,一种高效的压电复合材料是用壳聚糖掺入铋铁氧体(BFO)纳米晶体设计的,分解污染物和消除废水中的细菌。一方面,压电BFO已显示出用于超声介导的活性氧(ROS)产生的专有压电系数。另一方面,壳聚糖描述了它的生物相容性,这不仅促进了细胞粘附,而且显着提高了超声下BFO的ROS生产能力。这两个压电单元在一个复合实体中的协同作用显示出改进的ROS产生,在软超声治疗下,在80分钟内根除罗丹明B87.8%(速率常数,k≈0.02866min-1)。进行清除剂实验后,已经发现羟基自由基是这种情况下的主要因素。Further,复合压电催化剂的可重用性通过同一实验的多次循环(五次)得到证实。复合材料的高极化率有助于通过手指敲击(〜12.05V)产生压电功率,产生大量的瞬时压电电压。此外,样品表现出显著的抗菌活性,在30分钟内根除近99%的细菌。这表明在利用与BFO结合的生物聚合物复合材料制造具有多维应用的多功能装置方面取得了重大进展。
    Untreated wastewater harbors dangerous pathogens, chemicals, and pollutants, posing grave public health threats. Nowadays, there is a rising demand for eco-friendly technologies for wastewater treatment. Recently, piezoelectric materials-based wastewater treatment technology has captured considerable interest among researchers because of its noninvasiveness and rapidity. Herein, a highly efficient piezoelectric composite material is designed with chitosan-incorporated bismuth ferrite (BFO) nanocrystals, to decompose pollutants and ablate bacteria in wastewater. On one hand, piezoelectric BFO has shown exclusive piezo-coefficient for ultrasound-mediated reactive oxygen species (ROS) production. On the other hand, chitosan depicts its biocompatible nature, which not only promotes cellular adhesion but also significantly elevates the ROS production capabilities of BFO under ultrasound. The synergistic effect of these two piezoelectric units in one composite entity shows an improved ROS production, eradicating ∼87.8% of Rhodamine B within 80 min under soft ultrasound treatment (rate constant, k ≈ 0.02866 min-1). After performing the scavenger experiment, it has been found that hydroxyl radicals are the dominating factor in this case. Further, the reusability of the composite piezocatalyst is confirmed through multiple cycles (five times) of the same experiment. The high polarizability of the composite material facilitates the generation of piezoelectric power through finger tapping (∼12.05 V), producing substantial instantaneous piezo-voltage. Moreover, the sample exhibits remarkable antibacterial activity, with nearly 99% bacterial eradication within 30 min. This indicates a significant advancement in utilizing biopolymeric composites incorporated with BFO for fabricating versatile devices with multidimensional applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    S方案异质结的制造证明是实现有效电荷分离和增强压电催化剂催化活性的有效策略。在这项研究中,通过NiO纳米粒子的光沉积在PbBiO2Br表面上制备了一种新的S方案异质结。然后将其用于罗丹明B(RhB)的压电催化降解。结果表明,NiO/PbBiO2Br复合材料在压电催化RhB降解中表现出有效的性能。最佳样品是辐照2h后合成的NiO/PbBiO2Br,RhB降解率为3.11h-1,是纯PbBiO2Br的12.4倍。同时暴露于可见光和超声进一步增加了RhB降解率,达到4.60h-1,突出了NiO/PbBiO2Br复合材料中光和压电的协同作用。通过电化学分析,对NiO/PbBiO2Br异质结处的电荷迁移机理进行了全面探索,理论计算,和原位X射线光电子能谱分析。结果表明,p型半导体NiO和n型半导体PbBiO2Br具有匹配的能带结构,在它们的界面处建立S方案异质结结构。在带弯曲的综合作用下,界面电场,和库仑吸引力,电子和空穴在PbBiO2Br的导带和NiO的价带上迁移和积累,分别,从而实现电荷载流子的有效空间分离。催化剂的协同光电催化效应可以归因于其在光照射和压电场下促进电荷载流子的产生和分离的作用。这项研究的结果为催化材料的开发和生产提供了宝贵的见解,这些材料通过压电催化和光催化的协同作用表现出出色的性能。
    The fabrication of an S-scheme heterojunction demonstrates as an efficient strategy for achieving efficient charge separation and enhancing catalytic activity of piezocatalysts. In this study, a new S-scheme heterojunction was fabricated on the PbBiO2Br surface through the photo-deposition of NiO nanoparticles. It was then employed in the piezoelectric catalytic degradation of Rhodamine B (RhB). The results demonstrate that the NiO/PbBiO2Br composite exhibits efficient performance in piezocatalytic RhB degradation. The optimal sample is the NiO/PbBiO2Br synthesized after 2 h of irradiation, achieving a RhB degradation rate of 3.11 h-1, which is 12.4 times higher than that of pure PbBiO2Br. Simultaneous exposure to visible light and ultrasound further increases in the RhB degradation rate, reaching 4.60 h-1, highlighting the synergistic effect of light and piezoelectricity in the NiO/PbBiO2Br composite. A comprehensive exploration of the charge migration mechanism at the NiO/PbBiO2Br heterojunction was undertaken through electrochemical analyses, theoretical calculations, and in-situ X-ray photoelectron spectroscopy analysis. The outcomes reveal that p-type semiconductor NiO and n-type semiconductor PbBiO2Br possess matching band structures, establishing an S-scheme heterojunction structure at their interface. Under the combined effects of band bending, interface electric fields, and Coulomb attraction, electrons and holes migrate and accumulate on the conduction band of PbBiO2Br and valence band of NiO, respectively, thereby achieving effective spatial separation of charge carriers. The catalyst\'s synergistic photo-piezoelectric catalysis effect can be ascribed to its role in promoting the generation and separation of charge carriers under both light irradiation and the piezoelectric field. The results of this investigation offer valuable insights into the development and production of catalytic materials that exhibit outstanding performance through the synergy of piezocatalysis and photocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于压电催化的二硫化钼(MoS2)基材料由于其低的实际压电系数和差的导电性而不能令人满意。在这里,提出了在多壁碳纳米管(MWCNTs)上原位生长1T/3R相MoS2。MoS2@MWCNT表现出薄纳米花和管的交织形态,通过压电响应力显微镜(PFM)表征,MoS2@MWCNT的压电响应是MoS2的4.07倍。MoS2@MWCNTs在实际工作24分钟后表现出优异的活性,诺氟沙星(NOR)的降解率为91%(至于罗丹明B,通过脉冲模式超声振动触发的压电催化,在18分钟内达到100%)。研究发现,用于去除污染物的压电催化归因于自由基(•OH和O2•-)和非自由基(1O2,关键作用)途径的协同作用,与内生成的H2O2一起促进降解速率。1O2可以通过电子转移和能量转移途径产生。氧空位(OVs)的存在通过三重态能量转移诱导O2向1O2的转化。MoS2@MWCNTs异质结构中的快速电荷转移以及硫空位和OVs的共存增强了电荷载流子的分离,从而产生了显着的压电效应。这项工作为开发可用于环境净化的高效压电催化剂开辟了新途径。
    Molybdenum disulfide (MoS2)-based materials for piezocatalysis are unsatisfactory due to their low actual piezoelectric coefficient and poor electrical conductivity. Herein, 1T/3R phase MoS2 grown in situ on multiwalled carbon nanotubes (MWCNTs) was proposed. MoS2@MWCNTs exhibited the interwoven morphology of thin nanoflowers and tubes, and the piezoelectric response of MoS2@MWCNTs was 4.07 times higher than that of MoS2 via piezoresponse force microscopy (PFM) characterization. MoS2@MWCNTs exhibited superior activity with a 91% degradation rate of norfloxacin (NOR) after actually working 24 min (as for rhodamine B, reached 100% within 18 min) by pulse-mode ultrasonic vibration-triggered piezocatalysis. It was found that piezocatalysis for removing pollutants was attributed to the synergistic effect of free radicals (•OH and O2•-) and nonfree radical (1O2, key role) pathways, together with the innergenerated-H2O2 promoting the degradation rate. 1O2 can be generated by electron transfer and energy transfer pathways. The presence of oxygen vacancies (OVs) induced the transformation of O2 to 1O2 by triplet energy transfer. The fast charge transfer in MoS2@MWCNTs heterostructure and the coexistence of sulfur vacancies and OVs enhanced charge carrier separation resulting in a prominent piezoelectric effect. This work opens up new avenues for the development of efficient piezocatalysts that can be utilized for environmental purification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为解决废水处理挑战的有效方法,压电催化诱导的染料降解已引起广泛关注。在我们的研究中,我们采用室温声化学方法合成了不同Li掺杂水平的压电钛酸钡纳米颗粒(BaTiO3:BTO)。这种方法不仅简化了样品制备过程,而且大大减少了合成所需的总时间。使其成为一种高效实用的方法。关键发现之一是掺杂锂的BTO纳米颗粒的卓越性能。加入20毫克锂添加剂,我们在150分钟的相对较短的时间内实现了90%的罗丹明B(RhB)染料去除,同时使样品经受超声波振动。通过计算的动力学速率常数进一步证明了这种快速有效的染料降解,这表明与纯BTO相比降解速率快七倍。在Li掺杂的BTO纳米粒子中观察到的增强的压电性能可以归因于Li原子的战略取代,这促进了电荷在界面处的更有效的转移。总的来说,我们的研究强调了压电催化与先进材料(如掺杂锂的BTO纳米颗粒)耦合作为废水处理的可行和有前途的解决方案的潜力,提供效率和环境可持续性。
    Piezocatalysis-induced dye degradation has garnered significant attention as an effective method for addressing wastewater treatment challenges. In our study, we employed a room-temperature sonochemical method to synthesize piezoelectric barium titanate nanoparticles (BaTiO3: BTO) with varying levels of Li doping. This approach not only streamlined the sample preparation process but also significantly reduced the overall time required for synthesis, making it a highly efficient and practical method. One of the key findings was the exceptional performance of the Li-doped BTO nanoparticles. With 20 mg of Li additive, we achieved 90 % removal of Rhodamine B (RhB) dye within a relatively short timeframe of 150 minutes, all while subjecting the sample to ultrasonic vibration. This rapid and efficient dye degradation was further evidenced by the calculated kinetic rate constant, which indicated seven times faster degradation rate compared to pure BTO. The enhanced piezoelectric performance observed in the Li-doped BTO nanoparticles can be attributed to the strategic substitution of Li atoms, which facilitated a more efficient transfer of charge charges at the interface. Overall, our study underscores the potential of piezocatalysis coupled with advanced materials like Li-doped BTO nanoparticles as a viable and promising solution for wastewater treatment, offering both efficiency and environmental sustainability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号