Photosystem I Protein Complex

光系统 I 蛋白质复合物
  • 文章类型: Journal Article
    结论:Cd诱导柑橘的光合抑制和氧化应激损伤,动员抗氧化系统并调节相应基因的表达以适应Cd和Pb胁迫。Cd和Pb是造成严重污染的重金属,对生物具有高度危害。将生理测量和转录组学分析相结合,以研究5mMCd或Pb对HemerocalliscitrinaBaroni的影响。Cd显著抑制了H.citrina的生长,而Pb的影响很小。Cd和Pb都抑制了关键叶绿素合成基因的表达水平,导致叶绿素含量下降。同时,Cd加速叶绿素降解。它降低了光系统(PS)II的最大光化学效率,破坏氧气释放复合物并导致类囊体解离。相比之下,在铅胁迫下没有观察到这种现象。Cd还通过下调Rubisco和SBPase基因的表达来抑制卡尔文循环,最终破坏光合过程。Cd通过破坏天线蛋白影响光反应过程,PSII和PSI活动,和电子转移速率,而Pb的影响较弱。Cd显著增加活性氧和丙二醛的积累,并抑制抗氧化酶的活性和相应基因的表达水平。然而,H.citrina通过募集抗氧化酶及其相应基因的上调来适应铅胁迫。总之,Cd和Pb抑制叶绿素合成,阻碍光捕获和电子转移过程,Cd比Pb具有很大的毒性。这些结果阐明了柑橘对Cd和Pb胁迫的生理和分子机制,并为柑橘在重金属污染土地绿化中的潜在利用提供了坚实的基础。
    CONCLUSIONS: Cd induces photosynthetic inhibition and oxidative stress damage in H. citrina, which mobilizes the antioxidant system and regulates the expression of corresponding genes to adapt to Cd and Pb stress. Cd and Pb are heavy metals that cause severe pollution and are highly hazardous to organisms. Physiological measurements and transcriptomic analysis were combined to investigate the effect of 5 mM Cd or Pb on Hemerocallis citrina Baroni. Cd significantly inhibited H. citrina growth, while Pb had a minimal impact. Both Cd and Pb suppressed the expression levels of key chlorophyll synthesis genes, resulting in decreased chlorophyll content. At the same time, Cd accelerated chlorophyll degradation. It reduced the maximum photochemical efficiency of photosystem (PS) II, damaging the oxygen-evolving complex and leading to thylakoid dissociation. In contrast, no such phenomena were observed under Pb stress. Cd also inhibited the Calvin cycle by down-regulating the expression of Rubisco and SBPase genes, ultimately disrupting the photosynthetic process. Cd impacted the light reaction processes by damaging the antenna proteins, PS II and PS I activities, and electron transfer rate, while the impact of Pb was weaker. Cd significantly increased reactive oxygen species and malondialdehyde accumulation, and inhibited the activities of antioxidant enzymes and the expression levels of the corresponding genes. However, H. citrina adapted to Pb stress by the recruitment of antioxidant enzymes and the up-regulation of their corresponding genes. In summary, Cd and Pb inhibited chlorophyll synthesis and hindered the light capture and electron transfer processes, with Cd exerting great toxicity than Pb. These results elucidate the physiological and molecular mechanisms by which H. citrina responds to Cd and Pb stress and provide a solid basis for the potential utilization of H. citrina in the greening of heavy metal-polluted lands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光合色素-蛋白质复合物中色素过渡密度之间的库仑耦合,称为激子耦合,是描述光谱和能量转移的关键因素。一个具有挑战性的问题是通过环境的光学极化来量化激子耦合的筛选。我们使用复杂的量子化学可极化连续体(PCM)模型与简单的静电Poisson-TrEsp方法之间的等效性来分析光系统I三聚体中叶绿素之间的介电筛选的距离和取向依赖性。在这些计算的基础上,我们发现真空耦合Vmn(0)和电介质Vmn=fmnVmn(0)中的耦合通过经验筛选因子fmn=0.6039.6θ(|κmn|-1.17)exp(-0.56Rmn/and),其中κmn是颜料之间偶极-偶极耦合的通常取向因子,Rmn是中心到中心的距离,和Heaviside函数θ(|κmn|-1.17)确保指数距离依赖性仅对直列型偶极子几何形状有贡献。我们相信,本发明的表达也可以应用于具有叶绿素或类似形状的相关色素的其它色素-蛋白质复合物。使用本表达式,发现Poisson-TrEsp与近似耦合值之间的方差减少了8倍和3-4倍,而不是指数距离相关或恒定的筛选因子,分别,以前在文献中假设。
    The Coulomb coupling between transition densities of the pigments in photosynthetic pigment-protein complexes, termed excitonic coupling, is a key factor for the description of optical spectra and energy transfer. A challenging question is the quantification of the screening of the excitonic coupling by the optical polarizability of the environment. We use the equivalence between the sophisticated quantum chemical polarizable continuum (PCM) model and the simple electrostatic Poisson-TrEsp approach to analyze the distance and orientation dependence of the dielectric screening between chlorophylls in photosystem I trimers. On the basis of these calculations we find that the vacuum couplings Vmn(0) and the couplings in the dielectric medium Vmn=fmnVmn(0) are related by the empirical screening factor fmn=0.60+39.6θ(|κmn|-1.17)exp(-0.56Rmn/Å), where κmn is the usual orientational factor of the dipole-dipole coupling between the pigments, Rmn is the center-to-center distance, and the Heaviside-function θ(|κmn|-1.17) ensures that the exponential distance dependence only contributes for in-line type dipole geometries. We are confident that the present expression can be applied also to other pigment-protein complexes with chlorophyll or related pigments of similar shape. The variance between the Poisson-TrEsp and the approximate coupling values is found to decrease by a factor of 8 and 3-4 using the present expression, instead of an exponential distance dependent or constant screening factor, respectively, assumed previously in the literature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    含氧光合作用的过程主要由两种称为光系统II(PSII)和光系统I(PSI)的多蛋白复合物驱动。PSII促进了光诱导的水分解和质体醌还原反应,而PSI充当光驱动的质体蓝素-铁氧还蛋白氧化还原酶。与所有放氧光合生物中PSII的高度保守结构相反,PSI的结构表现出显著的变化,特别是在特殊环境中生长的光合生物。在这次审查中,我们从结构生物学的角度简要概述了最近从光合微生物包括原核蓝细菌和真核藻类中对PSI的研究。所有已知的PSI复合物都含有高度保守的异二聚体核心;然而,它们的色素组成和外周捕光蛋白基本上是柔性的。PSI的这种结构可塑性揭示了光合生物对环境变化的动态适应。
    The process of oxygenic photosynthesis is primarily driven by two multiprotein complexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations, especially for photosynthetic organisms that grow in special environments. In this review, we make a concise overview of the recent investigations of PSI from photosynthetic microorganisms including prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有与纳米结构结合的天然光催化剂的生物纳米混合器件在寻找可持续的能量转换方面具有很大的前景。整合生物系统的主要挑战之一是保护它们免受恶劣的环境条件的影响,同时保留,或理想地增强它们的光物理性质。在这项主要的计算工作中,我们研究了嵌入金属有机框架(MOF)中的蓝细菌光系统I(PSI)的集合,即沸石咪唑酯骨架ZIF-8。已经通过实验报道了这种复合物[Bennett等人。,纳米级Adv.,2019,1,94]但到目前为止,PSI和MOF之间的分子相互作用仍然难以捉摸。我们通过吸收光谱表明,PSI在整个封装-释放周期中保持完整。分子动力学(MD)模拟进一步证实,封装对光系统没有明显的结构影响。然而,MOF结构单元经常与天线复合物外围的叶绿素的Mg2离子配位。高级量子力学计算揭示了电荷转移相互作用,影响激子网络,从而可以可逆地改变PSI的荧光特性。我们的结果突出了MOF中PSI的稳定性,由于反应中心不受异质环境的阻碍,在可预见的未来为应用铺平道路。
    Bio-nanohybrid devices featuring natural photocatalysts bound to a nanostructure hold great promise in the search for sustainable energy conversion. One of the major challenges of integrating biological systems is protecting them against harsh environmental conditions while retaining, or ideally enhancing their photophysical properties. In this mainly computational work we investigate an assembly of cyanobacterial photosystem I (PS I) embedded in a metal-organic framework (MOF), namely the zeolitic imidazolate framework ZIF-8. This complex has been reported experimentally [Bennett et al., Nanoscale Adv., 2019, 1, 94] but so far the molecular interactions between PS I and the MOF remained elusive. We show via absorption spectroscopy that PS I remains intact throughout the encapsulation-release cycle. Molecular dynamics (MD) simulations further confirm that the encapsulation has no noticeable structural impact on the photosystem. However, the MOF building blocks frequently coordinate to the Mg2+ ions of chlorophylls in the periphery of the antenna complex. High-level quantum mechanical calculations reveal charge-transfer interactions, which affect the excitonic network and thereby may reversibly change the fluorescence properties of PS I. Nevertheless, our results highlight the stability of PS I in the MOF, as the reaction center remains unimpeded by the heterogeneous environment, paving the way for applications in the foreseeable future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将太阳能转化为化学能的光合作用是地球上最重要的化学反应之一。在蓝细菌中,光能被天线系统藻胆体(PBS)捕获,并转移到光系统II(PSII)和光系统I(PSI)的光合反应中心。虽然大多数参与光合作用的蛋白质复合物已经通过体外结构分析进行了表征,这些蛋白质复合物如何在体内共同发挥作用尚不清楚。在这里,我们实现了STAgSPA,原位结构分析策略,解决蓝细菌节肢动物的PBS-PSII超复合物的天然结构。FACHB439分辨率为~3.5µ。结构揭示了相邻PBS和PSII二聚体之间的偶联细节,以及多种超级PBS介导的蓝藻协同能量转移机制。我们的结果为原核蓝细菌和真核红藻之间光合作用相关系统的多样性提供了见解,但也是细胞或组织样品中高分辨率结构分析的方法学证明。
    Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氢化酶和光合反应中心(RC)的融合已被证明是生产可持续生物燃料的有希望的策略。I型(含铁硫)RC,作为光敏剂,能够将电子促进到氧化还原态,氢酶可以利用该氧化还原态将质子还原为二氢(H2)。虽然[FeFe]和[NiFe]氢化酶都已成功使用,由于O2敏感性,它们往往受到限制,结合特异性,或H2生产率。在这项研究中,我们融合了光系统I(PSI)的外围(基质)亚基,PsaE,使用柔性[GGS]4接头基团(CbHydA1-PsaE)从贝氏梭菌中提取耐O2的[FeFe]氢化酶。我们证明了CbHydA1嵌合体可以在体外合成激活以显示双向活性,并且可以定量地与缺乏PsaE亚基的PSI变体结合。当在厌氧环境中照明时,纳米构建体以84.9±3.1µmolH2mgchl-1h-1的速率产生H2。Further,当在O2存在下制备和照射时,纳米结构保留了产生H2的能力,尽管速率降低了2.2±0.5µmolH2mgchl-1h-1。这不仅表明PsaE是基于PSI的纳米构建体的有前途的支架,但是使用耐O2的[FeFe]氢化酶为体内H2产生系统提供了可能性,该系统可以在O2存在下发挥作用。
    The fusion of hydrogenases and photosynthetic reaction centers (RCs) has proven to be a promising strategy for the production of sustainable biofuels. Type I (iron-sulfur-containing) RCs, acting as photosensitizers, are capable of promoting electrons to a redox state that can be exploited by hydrogenases for the reduction of protons to dihydrogen (H2). While both [FeFe] and [NiFe] hydrogenases have been used successfully, they tend to be limited due to either O2 sensitivity, binding specificity, or H2 production rates. In this study, we fuse a peripheral (stromal) subunit of Photosystem I (PS I), PsaE, to an O2-tolerant [FeFe] hydrogenase from Clostridium beijerinckii using a flexible [GGS]4 linker group (CbHydA1-PsaE). We demonstrate that the CbHydA1 chimera can be synthetically activated in vitro to show bidirectional activity and that it can be quantitatively bound to a PS I variant lacking the PsaE subunit. When illuminated in an anaerobic environment, the nanoconstruct generates H2 at a rate of 84.9 ± 3.1 µmol H2 mgchl-1 h-1. Further, when prepared and illuminated in the presence of O2, the nanoconstruct retains the ability to generate H2, though at a diminished rate of 2.2 ± 0.5 µmol H2 mgchl-1 h-1. This demonstrates not only that PsaE is a promising scaffold for PS I-based nanoconstructs, but the use of an O2-tolerant [FeFe] hydrogenase opens the possibility for an in vivo H2 generating system that can function in the presence of O2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一些蓝细菌不仅可以使用可见光,而且还可以使用远红光进行光合作用,由于其较低的能量含量,大多数其他含氧光自养生物都没有使用。这些物种具有改良的光合装置,其中包含红移的色素。红移颜料的掺入降低了光系统I的光化学效率,尤其是,光系统II,它可能会影响激发能量在两个光系统之间的分布,可能会影响整个电子传输链的活动。为了研究这些色素变化对体内光合活性的影响,我们在这里介绍一种光谱方法的适应,基于一种称为电致变色(ECS)的物理现象,远红色吸收的蓝细菌AmcaryochlorisMarina和嗜铬杆菌PCC7203。ECS测量由光合电子转移产生的跨类囊体质子动力的电场分量。我们表明,ECS可用于这些蓝细菌中,以研究体内光系统I和光系统II的化学计量及其吸收截面,以及光能转换为电子传输的整体效率。我们的结果表明,这两个物种以相似的效率使用可见光和远红光,尽管它们的光吸收特性存在显著差异。因此,ECS代表了一种新的非侵入性工具,用于研究自然发生的远红色光合作用的性能。
    Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光系统I(PSI)是研究电子转移(ET)和能量转换等基本过程的模型系统,这不仅是光合作用的核心,而且对生物能源生产和仿生设备设计具有更广泛的意义。在这项研究中,我们使用电子顺磁共振(EPR)光谱来研究从几种绿藻和蓝细菌物种中分离出的PSI中的关键光诱导电荷分离步骤。光激发后,快速顺序ET通过嵌入蛋白质核心的供体/受体辅因子的两个准对称分支中的任何一个发生,称为A和B分支。使用高频(130GHz)时间分辨EPR(TR-EPR)和氘代技术来增强光谱分辨率,我们观察到,在低温下,原核PSI在A分支中表现出可逆的ET,在B分支中表现出不可逆的ET,而来自真核生物对应物的PSI在两个分支中或仅在B分支中显示可逆的ET。此外,我们观察到低温电荷分离与PSI的末端[4Fe-4S]团簇之间存在显着相关性,称为FA和FB,反映在测量的FA/FB比率中。这些发现增强了我们对PSIET跨不同物种的机制多样性的理解,并强调了实验设计在解决这些差异中的重要性。尽管需要进一步的研究来阐明PSI电荷分离中这些变化的潜在机制和进化意义,这项研究为未来研究蛋白质结构之间复杂的相互作用奠定了基础,ET途径,和光合生物的环境适应。
    Photosystem I (PSI) serves as a model system for studying fundamental processes such as electron transfer (ET) and energy conversion, which are not only central to photosynthesis but also have broader implications for bioenergy production and biomimetic device design. In this study, we employed electron paramagnetic resonance (EPR) spectroscopy to investigate key light-induced charge separation steps in PSI isolated from several green algal and cyanobacterial species. Following photoexcitation, rapid sequential ET occurs through either of two quasi-symmetric branches of donor/acceptor cofactors embedded within the protein core, termed the A and B branches. Using high-frequency (130 GHz) time-resolved EPR (TR-EPR) and deuteration techniques to enhance spectral resolution, we observed that at low temperatures prokaryotic PSI exhibits reversible ET in the A branch and irreversible ET in the B branch, while PSI from eukaryotic counterparts displays either reversible ET in both branches or exclusively in the B branch. Furthermore, we observed a notable correlation between low-temperature charge separation to the terminal [4Fe-4S] clusters of PSI, termed FA and FB, as reflected in the measured FA/FB ratio. These findings enhance our understanding of the mechanistic diversity of PSI\'s ET across different species and underscore the importance of experimental design in resolving these differences. Though further research is necessary to elucidate the underlying mechanisms and the evolutionary significance of these variations in PSI charge separation, this study sets the stage for future investigations into the complex interplay between protein structure, ET pathways, and the environmental adaptations of photosynthetic organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蓝细菌是生物技术应用的重要目标,因为它们能够在各种环境中生长,快速增长,和可处理的遗传系统。它们和它们的生物产品可以用作生物塑料,生物肥料,并在碳捕获中产生可用作药物的重要次级代谢产物。然而,蓝藻的光合过程可能受到多种环境因素的限制,如光照强度和波长,暴露于紫外线,营养限制,温度,和盐度。仔细考虑这些限制,修改环境,和/或选择蓝细菌物种将允许蓝细菌用于生物技术应用。
    Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity. Carefully considering these limitations, modifying the environment, and/or selecting cyanobacterial species will allow cyanobacteria to be used in biotechnological applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来自Fittoniaalbivenis的照片系统I(PSI),一种刺科观赏植物,在绿色植物中值得注意的是其红移发射光谱。这里,我们使用低温电子显微镜以2.46-µ的分辨率解决了来自F.albivenis的PSI光捕获复合物I(LHCI)超复合物的结构。超复合物包含14个亚基的核心复合物和具有四个天线亚基(Lhca1-4)的LHCI带,类似于先前报道的被子植物PSI-LHCI结构;但是,Lhca3在围绕低能量叶绿素(Chls)二聚体的三个区域不同,称为红色Chls,它吸收可见光以外的远红色。这些区域内的独特氨基酸序列仅由具有强烈红移荧光发射的植物共享,提出了调节红色Chls能量状态的候选结构元素。这些结果为揭示冠层下植物的PSI-LHCI中的光收获和传输机制以及设计Lhc以在远红光谱范围内利用较长波长的光提供了结构基础。
    Photosystem I (PSI) from Fittonia albivenis, an Acanthaceae ornamental plant, is notable among green plants for its red-shifted emission spectrum. Here, we solved the structure of a PSI-light harvesting complex I (LHCI) supercomplex from F. albivenis at 2.46-Å resolution using cryo-electron microscopy. The supercomplex contains a core complex of 14 subunits and an LHCI belt with four antenna subunits (Lhca1-4) similar to previously reported angiosperm PSI-LHCI structures; however, Lhca3 differs in three regions surrounding a dimer of low-energy chlorophylls (Chls) termed red Chls, which absorb far-red beyond visible light. The unique amino acid sequences within these regions are exclusively shared by plants with strongly red-shifted fluorescence emission, suggesting candidate structural elements for regulating the energy state of red Chls. These results provide a structural basis for unraveling the mechanisms of light harvest and transfer in PSI-LHCI of under canopy plants and for designing Lhc to harness longer-wavelength light in the far-red spectral range.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号