Photoelectrochemical sensor

光电化学传感器
  • 文章类型: Journal Article
    我们提出了一种非线性光谱电化学技术来研究光合蛋白质复合物。PEC2DES设置结合了光电化学检测(PEC),该检测选择性地探测具有二维电子光谱(2DES)激发的蛋白质光生电荷输出,该激发在激发-检测图中传播系统的非线性光学响应。PEC使我们能够区分电荷分离(CS)与其他去激发途径的贡献,而2DES使我们能够解开拥挤的光谱带,并评估光系统复合体的激子动力学(衰变和相干性)。我们通过测量用植物光系统复合物I-光捕获复合物I(PSI-LHCI)层功能化的生物混合电极中的光电化学反应速率,开发了操作相位调制的2DES。优化光电化学电流信号产生与PSI-LHCI明确相关的可靠线性光谱。2DES信号通过非线性特征进行验证,例如在750cm-1处的特征振动相干性。然而,在450fs实验窗口内没有观察到能量转移动力学。在不相干混合的背景下讨论了这些有趣的结果,从而降低了多色复合物的非线性对比度。如160叶绿素PSI。所提出的PEC2DES方法与纯光学2DES不同,可以识别产生的电荷,并为探测多发色团复合物中的CS通道开辟了道路。
    We present a nonlinear spectroelectrochemical technique to investigate photosynthetic protein complexes. The PEC2DES setup combines photoelectrochemical detection (PEC) that selectively probes the protein photogenerated charges output with two-dimensional electronic spectroscopy (2DES) excitation that spreads the nonlinear optical response of the system in an excitation-detection map. PEC allows us to distinguish the contribution of charge separation (CS) from other de-excitation pathways, whereas 2DES allows us to disentangle congested spectral bands and evaluate the exciton dynamics (decays and coherences) of the photosystem complex. We have developed in operando phase-modulated 2DES by measuring the photoelectrochemical reaction rate in a biohybrid electrode functionalized with a plant photosystem complex I-light harvesting complex I (PSI-LHCI) layer. Optimizing the photoelectrochemical current signal yields reliable linear spectra unequivocally associated with PSI-LHCI. The 2DES signal is validated by nonlinear features like the characteristic vibrational coherence at 750 cm-1. However, no energy transfer dynamics is observed within the 450 fs experimental window. These intriguing results are discussed in the context of incoherent mixing resulting in reduced nonlinear contrast for multichromophoric complexes, such as the 160 chlorophyll PSI. The presented PEC2DES method identifies generated charges unlike purely optical 2DES and opens the way to probe the CS channel in multichromophoric complexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    报道了一种用于非酶光电化学(PEC)测定硫化氢(H2S)的BiVO4/Fe2O3异质结。BiVO4/Fe2O3异质结促进了光生载流子的分离,减少电子-空穴复合,从而改善了电子收集和光电流。提出的BiVO4/Fe2O3/FTO传感器的线性范围为1-500μM,检测限为0.51nMH2S。此外,高选择性,重现性好,并获得了H2S传感的稳定性。水和血清样品中H2S的检测证明了其可行性。这项工作为检测和理解H2S在生物环境中的生物功能提供了新的策略。
    A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 μM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:这项研究提出了一种用于基于CdS半导体膜的离子选择性电极(ISE)的新型光电化学(PEC)转换方法。动机源于需要提高各种分析应用的ISE的灵敏度和精度。
    结果:我们通过水热法在FTO导电玻璃上合成了CdS薄膜,并将该电极用作工作电极。在可见光照射下,CdS产生的光电流与其在〜0.80V的大电势窗口内施加的电压成正比。抗坏血酸(AA)有效地抑制了电子-空穴络合,增强光电流稳定性。来自作为参比电极的ISE的电势调制进一步调节了光电流的产生,对宽范围的离子浓度表现出优异的灵敏度和线性度。通过检测血清钙水平验证了该方法的有效性。与传统的ISEs电位法和ICP-OES方法一致。
    结论:这种光电化学转换策略为灵敏和准确的离子检测提供了一种有前途的方法,在临床诊断和环境监测中具有潜在的应用。
    BACKGROUND: This study presents a novel photoelectrochemical (PEC) conversion method for ion-selective electrodes (ISEs) based on CdS semiconductor film. The motivation stems from the need to enhance the sensitivity and precision of ISEs for various analytical applications.
    RESULTS: We synthesized CdS film on FTO conductive glass via a hydrothermal method and utilized this electrode as the working electrode. Under visible light irradiation, CdS generated photocurrent that is proportional to its applied voltage within a large potential window of ∼0.80 V. Ascorbic acid (AA) effectively inhibited electron-hole complexation, enhancing photocurrent stability. Potential modulation from ISEs acting as the reference electrode further regulated photocurrent generation, demonstrating excellent sensitivity and linearity for a wide range of ion concentrations. The method was validated by detecting serum calcium levels, showing agreement with traditional ISEs potentiometry and ICP-OES methods.
    CONCLUSIONS: This photoelectrochemical conversion strategy offers a promising approach for sensitive and accurate ion detection, with potential applications in clinical diagnostics and environmental monitoring.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脱氧雪腐镰刀菌烯醇(DON),镰刀菌产生的一种霉菌毒素,对人类健康和环境构成重大风险。因此,开发高度灵敏和准确的检测方法对于监测污染状况至关重要。为了响应这一要求,我们设计了一种先进的分裂型光电化学(PEC)传感器,用于DON分析,它利用自脱落的MOF纳米载体来调节PEC衬底的光电响应能力。使用CdS/MoSe2异质结构构建PEC传感界面,而自脱落的过氧化铜纳米点@ZIF-8(CPNs@ZIF-8)作为原位离子交换反应的Cu2源,这产生了与目标相关的信号减少。构建的PEC传感器具有0.1pgmL-1至500ngmL-1的宽线性范围,低检测限为0.038pgmL-1,具有高稳定性,选择性,和主动性。这项工作不仅为光敏材料的设计引入了创新的想法,而且还提出了用于检测各种环境污染物的新型传感策略。
    Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一种新型光电化学传感器,采用酞菁和TiO2纳米颗粒的S方案异质结,已开发出能够高灵敏度地测定谷胱甘肽。通过整合有利的稳定性,环境仁慈,和具有酞菁物种独特光活性的TiO2基质的电子性质,所设计的传感器具有相当大的线性动态范围和定量谷胱甘肽的低检测限。灵敏度归因于跨交错异质结能级的有效电荷转移和分离,产生可测量的光电流信号。酞菁含量的系统变化揭示了平衡光捕获能力和电子-空穴复合率的最佳组成。在样品制备中掺入磷钨酸(PTA)有效地使来自化合物如L-半胱氨酸等的干扰最小化。因此,这通过降低杂质水平来提高精度。在优化的复合光阳极上引入氧化和还原的谷胱甘肽后,观察到明显的光电流增强。再加上光电化学转换的有利特征,如简单性,成本效益,和抗污染,这种传感器在复杂的生物介质中具有很好的实际应用前景。
    A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    设计了一种与新型Au@Cd:SnO2/SnS2纳米复合材料耦合的竞争型光电化学(PEC)传感器,用于检测微流体设备中的17β-雌二醇(E2)。设计的Au@Cd:SnO2/SnS2纳米复合材料具有很高的光电化学活性,这归因于级联能带边缘的良好匹配以及由Cd掺杂缺陷产生的光生e/h对的有效分离能级。将Au@Cd:SnO2/SnS2纳米复合材料加载到碳糊电极(CPE)中以固定互补DNA(cDNA)和雌二醇适体探针DNA(E2-Apt),在CPE表面形成双链DNA结构。当目标E2与双链DNA相互作用时,E2-Apt从CPE敏感地释放,随后由于电极表面的空间位阻减小而增加光电流强度。竞争型传感机制,结合高PEC活性的Au@Cd:SnO2/SnS2纳米复合材料,有助于以“信号开启”方式快速、灵敏地检测E2。在优化条件下,PEC适应量的线性范围为1.0×10-13molL-1至3.2×10-6molL-1,检出限为1.2×10-14molL-1(S/N=3)。此外,微流控设备与智能手机控制的便携式电化学工作站的集成使E2的现场检测。小样品体积(10µL)和短分析时间(40分钟)证明了该策略在大鼠血清和河水中检测E2的巨大潜力。有了这些优势,PECaptasensor可用于临床和环境应用中的即时测试(POCT)。
    A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17β-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a \"signal on\" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为一种重要的化学中间体,邻苯二酚(CC)残留可能对人体健康产生不利影响。在这里,构建了一个基于MgIn2S4/CdWO4复合材料的有效而简便的光电化学传感器平台,用于监测CC。MgIn2S4增加光吸收范围和活性,虽然CdWO4增强了光电稳定性,形成的II型异质结可以显着增强光电流响应。由于自氧化过程,CC转化为低聚产物,这增加了空间位置电阻并衰减了整体光电流响应。值得注意的是,MgIn2S4的菜花状结构可以提供较大的比表面积,Mg2+的存在促进了自氧化,从而为检测CC提供合适的条件。在最优条件下,MgIn2S4/CdWO4/GCE光电化学传感器在2nM至7μM的CC浓度范围内具有突出的线性关系,检测限为0.27nM。具有令人满意的选择性,出色的稳定性,和显着的再现性,该传感器为高效、快速地检测环境水样中的污染物提供了重要的参考价值。
    As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 μM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有多功能功能的光电传感器已经成为未来光电系统在各种应用中取得突破的基石。特别是,新兴的光电化学(PEC)型装置最近吸引了广泛的兴趣,在基于液体的生物传感应用,由于其天然的电解质辅助操作特性。在这里,通过在硅上使用氮化镓(GaN)p-n同质结半导体纳米线,精心设计和构造了PEC型光传感器,p-GaN段战略掺杂,然后用钴镍氧化物(CoNiOx)装饰。本质上,p-n同质结结构与容易的p-掺杂工程提高载流子分离效率,促进载流子转移到纳米线表面,而CoNiOx装饰进一步增强PEC反应活性和载体动力学在纳米线/电解质界面。因此,构造的光电传感器实现了247.8mAW-1的高响应度,同时具有出色的操作稳定性。引人注目的是,基于设备的显着稳定性和高响应性,建立了一个葡萄糖传感系统,演示了真实人血清中的葡萄糖水平测定。这项工作提供了一种可行和通用的方法,通过合理设计具有战略性掺杂工程的纳米结构体系结构形式的PEC器件,来追求高性能的生物相关传感应用。
    Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p-n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide (CoNiOx). Essentially, the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W-1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于半导体的光电化学(PEC)测试协议通过将光和化学能转换为电信号,为开发有效的个人健康监测提供了可行的解决方案。然而,缓慢的反应动力学和界面处的电子-空穴络合限制了它们的实际应用。这里,我们报道了三重工程CdS纳米分层结构(CdSNHs)修饰方案,包括形态学,有缺陷的国家,和异质结构,以实现对血浆和非侵入性体液中神经递质多巴胺(DA)的精确监测。通过精确操纵Cd-S前体,我们实现了对三元CdSNHs的精确控制,并通过表面碳处理获得了定义明确的分层自组装CdSNHs。缺陷态和薄碳层的集成有效地建立了载流子定向转移途径,从而增强界面反应位点并提高转化效率。制造的CdSNHs微电极对DA表现出明显的负响应,从而能够开发微型自供电PEC设备,用于精确定量人体唾液。此外,利用密度泛函理论计算阐明了DA的结构特征和CdS的缺陷状态,从而为优化DA的聚合工艺奠定了重要的理论基础。本研究为开发高能量转换效率的PEC半导体提供了一种潜在的工程方法,并提出了设计敏感测试策略的新概念。
    Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究采用了一种创新的氧化铜/氧化亚铜(CuO/Cu2O)多面体-硫化镉量子点(CdSQD)双Z方案异质结构作为阴极PEC测定汞离子(Hg2)的基质。首先,通过煅烧铜基金属有机骨架(Cu-MOF)制备CuO/Cu2O多面体复合材料。随后,氨基修饰的CuO/Cu2O与巯基丙酸(MPA)封端的CdS量子点集成,形成CuO/Cu2O多面体-CdS量子点双Z方案异质结构,产生强大的阴极光电流。重要的是,当使用CdSQD作为Hg2识别探针时,这种异质结构对Hg2表现出特别降低的光电流。这归因于双Z方案异质结构的极端破坏和CuO/Cu2O-CdS/HgS异质结构的原位形成。此外,p型HgS与基质竞争电子受体,进一步降低光电流。因此,对Hg2+进行了敏感测定,具有低检测限(0.11pM)。制备的PEC传感器还用于分析食品和环境中的Hg2。
    This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron‑cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号