Photocatalysis

光催化
  • 文章类型: Journal Article
    光催化是一种有前途的可持续技术,可以去除有机污染并将太阳能转化为化学能。二氧化钛因其在紫外光下的高活性而受到广泛关注,化学稳定性好,大的可用性,价格低廉,毒性低。然而,来自快速电子/空穴复合的低量子效率,对阳光的有限利用,弱的还原能力仍然阻碍其实际应用。在提高TiO2性能的改性策略中,与其他半导体的异质结的构造是一种强大而通用的方法,可以最大限度地分离光生电荷载流子,并引导它们的传输效率和选择性提高。这里,综述了TiO2改性的研究进展和研究现状,专注于异质结。从传统的II型到最近概念化的S方案,见证了对不同电荷转移机制的理解的快速发展。特别注意旨在改善和控制界面电荷转移的不同合成方法和界面工程方法,以及几种具有金属氧化物的TiO2异质结构的情况,讨论了金属硫化物和碳氮化物。综述了TiO2基光催化剂的应用热点,包括通过水分解产生氢气,通过二氧化碳转化生产太阳能燃料,和有机水污染物的降解。还提供了关于较少研究和新兴过程的提示。最后,强调了与光催化技术商业化的可持续性和可扩展性相关的主要问题和挑战,概述未来的发展方向。
    Photocatalysis is a promising sustainable technology to remove organic pollution and convert solar energy into chemical energy. Titanium dioxide has drawn extensive attention in this field owing to its high activity under UV light, good chemical stability, large availability, low price and low toxicity. However, the poor quantum efficiency derived from fast electron/hole recombination, the limited utilization of sunlight, and a weak reducing ability still hinder its practical application. Among the modification strategies of TiO2 to enhance its performance, the construction of heterojunctions with other semiconductors is a powerful and versatile way to maximise the separation of photogenerated charge carriers and steer their transport toward enhanced efficiency and selectivity. Here, the research progress and current status of TiO2 modification are reviewed, focusing on heterojunctions. A rapid evolution of the understanding of the different charge transfer mechanisms is witnessed from traditional type II to the recently conceptualised S-scheme. Particular attention is paid to different synthetic approaches and interface engineering methods designed to improve and control the interfacial charge transfer, and several cases of TiO2 heterostructures with metal oxides, metal sulfides and carbon nitride are discussed. The application hotspots of TiO2-based photocatalysts are summarized, including hydrogen generation by water splitting, solar fuel production by CO2 conversion, and the degradation of organic water pollutants. Hints about less studied and emerging processes are also provided. Finally, the main issues and challenges related to the sustainability and scalability of photocatalytic technologies in view of their commercialization are highlighted, outlining future directions of development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有前景的光催化氨合成过程受到了更多的关注,但由于光催化剂周围的可见光利用率低和N2分子吸收能力弱,因此具有挑战性。在这里,首先提出了通过碳掺杂工艺重建具有高浓度活性位点的MXene-Ti3C2/CeO2复合材料的界面,在所制备的催化剂中形成了明显的具有三相反应界面的过渡区。最佳共掺杂样品在可见光区域表现出优异的光响应,最强的化学吸附活性和最活跃的位点。此外,在光照射下也会产生更多的原位额外氧缺陷。预计双重装饰催化剂在可见光照射下显示出高于0.76mmolgcal-1·h-1的显着氨产生速率,并且在420nm处具有1.08%的更高的表观量子效率,这是目前光催化固定N2最完整的性能之一。
    Prospective photocatalytic ammonia synthesis process has received more attentions but quite challenging with the low visible light utilization and weak N2 molecule absorption ability around the photocatalysts. Herein, interface reconstruction of MXene-Ti3C2/CeO2 composites with high-concentration active sites through the carbon-doped process are presented firstly, and obvious transition zones with the three-phase reaction interface are formed in the as-prepared catalysts. The optimal co-doped sample demonstrates an excellent photo response in the visible light region, the strongest chemisorption activity and the most active sites. Moreover, much more in-situ extra oxygen defects are also produced under light irradiation. It is expected that the double decorated catalyst shows a remarked ammonia production rate of above 0.76 mmol gcal-1·h-1 under visible-light illumination and a higher apparent quantum efficiency of 1.08 % at 420 nm, which is one of the most completive properties for the photocatalytic N2 fixation at present.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环氨基(烷基)和环氨基(芳基)卡宾(cAACs/cAArCs)已被确定为过渡金属配合物的催化和光子应用的非常有用的配体。在这里,我们描述了一种结构相关的空间要求的合成,亲电子[2.2]异吲哚基碳烯(iPC),具有[2.2]对环烷部分。后者导致更多的离域前沿轨道和(HiPC)OTf(2)在固态下从配体内电荷转移(1ILCT)状态产生强烈的绿色荧光。游离卡宾的碱促进合成导致不寻常的环膨胀和随后的二聚反应,但有益的配体性质可以通过在金属中心原位捕获来利用。iPC配体是一种非常有效的π-发色团,参与[RhCl(CO)2(iPC)](4)中的低能金属-配体(ML)CT跃迁和[Au(iPC)2]OTf(5)中的IL-“通过空间”-CT跃迁。iPC的空间需求导致5对空气的高稳定性,水分,或溶剂攻击,在溶液中观察到寿命为185μs的超长寿命绿色磷光。iPC配体的有益光物理和电子性质,包括一个大的可接近的π表面积,通过在使用5的[22]苯乙烯环加成反应中采用高效能量转移(EnT)光催化来开发,相比之下,其性能优于其他已建立的光催化剂。
    Cyclic amino(alkyl) and cyclic amino(aryl) carbenes (cAACs/cAArCs) have been established as very useful ligands for catalytic and photonic applications of transition metal complexes. Herein, we describe the synthesis of a structurally related sterically demanding, electrophilic [2.2]isoindolinophanyl-based carbene (iPC) with a [2.2]paracyclophane moiety. The latter leads to more delocalized frontier orbitals and intense green fluorescence of (HiPC)OTf (2) from an intra-ligand charge transfer (1ILCT) state in the solid state. Base-promoted synthesis of the free carbene led to an unusual ring expansion and subsequent dimerization reaction, but the beneficial ligand properties can be exploited by trapping in situ at a metal center. The iPC ligand is a very potent π-chromophore, which participates in low energy metal-to-ligand (ML)CT transitions in [RhCl(CO)2(iPC)] (4) and IL-\"through-space\"-CT transitions in [Au(iPC)2]OTf (5). The steric demand of the iPC leads to high stability of 5 against air, moisture, or solvent attack, and ultralong-lived green phosphorescence with a lifetime of 185 μs is observed in solution. The beneficial photophysical and electronic properties of the iPC ligand, including a large accessible π surface area, were exploited by employing highly efficient energy transfer (EnT) photocatalysis in a [2+2] styrene cycloaddition reaction using 5, which outperformed other established photocatalysts in comparison.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,探索了一种共催化途径来增强挥发性有机化合物(VOC)的光臭氧催化降解。将NiCo2O4负载到CeO2纳米颗粒的表面上以产生复合催化剂(10%NiCo2O4/CeO2)。NiCo2O4在CeO2上的集成增强了催化剂与甲苯之间的相互作用,代表性的VOC,导致甲苯吸附显着增加,而比表面积没有相应增加。这种集成还改善了电荷载体的利用和臭氧到O2的转化。在可见光照射下,H2O在10%NiCo2O4/CeO2表面积累电荷载流子,促进臭氧利用和甲苯吸附。NiCo2O4负载的另一个好处是其提高太阳能转换效率的能力。因此,与CeO2相比,10%NiCo2O4/CeO2的甲苯去除和矿化效率分别提高了182%和309%,与NiCo2O4相比分别提高了201%和357%。总的来说,这项研究证明了一种新型的助催化剂设计策略,用于增强VOCs的光臭氧催化降解。
    In this study, a co-catalytic route was explored to enhance the photo-ozone catalytic degradation of volatile organic compounds (VOCs). NiCo2O4 was loaded onto the surface of CeO2 nanoparticles to create a composite catalyst (10%NiCo2O4/CeO2). The integration of NiCo2O4 onto CeO2 enhanced the interaction between the catalyst and toluene, a representative VOC, resulting in significantly increased toluene adsorption without a corresponding increase in specific surface area. This integration also improved the utilization of charge carriers and conversion of ozone to O2-. Under visible light irradiation, H2O accumulated charge carriers at 10%NiCo2O4/CeO2\'s surface, facilitating both ozone utilization and toluene adsorption. Another benefit of NiCo2O4 loading was its ability to enhance the conversion efficiency of solar energy. Consequently, the toluene removal and mineralization efficiencies of 10%NiCo2O4/CeO2 were enhanced by 182% and 309% compared to CeO2, and by 201% and 357% compared to NiCo2O4, respectively. Overall, this study demonstrated a novel co-catalyst design strategy for enhancing the photo-ozone catalytic degradation of VOCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    压电光催化结合了光催化和压电效应,通过在光催化剂中产生内部电场来提高催化效率,改善载波分离和整体性能。这项研究提出了一种高性能的压电光催化剂,用于使用协同钛酸钡(BTO)-MXene复合材料进行高效染料降解。该复合材料是通过简单的方法合成的,将BTO纳米粒子的独特性质与MXene的高电导率相结合。结构和形态分析证实了复合材料的成功形成,在MXene表面上具有良好分散的BTO纳米颗粒。在紫外线照射和机械搅拌下,使用典型的染料溶液(罗丹明B:RhB)评估了复合材料的压电光催化活性。结果表明,与单个刺激(光催化为58.2%,压电催化为90分钟)相比,染料降解显着增强(压电光催化在15分钟内为90%),强调BTO和MXene之间的协同效应。增强的催化性能归因于有效的电荷分离和转移促进复合材料的结构,导致反应性物种产生增加和染料分子降解。此外,复合材料表现出优异的稳定性和可重用性,展示了其在废水处理中的实际应用潜力。总的来说,这项工作代表了设计高性能协同催化剂的有希望的策略,解决环境修复中对可持续解决方案的迫切需要。
    Piezo-photocatalysis combines photocatalysis and piezoelectric effects to enhance catalytic efficiency by creating an internal electric field in the photocatalyst, improving carrier separation and overall performance. This study presents a high-performance piezo-photocatalyst for efficient dye degradation using a synergistic barium titanate (BTO)-MXene composite. The composite was synthesized via a facile method, combining the unique properties of BTO nanoparticles with the high conductivity of MXene. The structural and morphological analysis confirmed the successful formation of the composite, with well-dispersed BTO nanoparticles on the MXene surface. The piezo-photocatalytic activity of the composite was evaluated using a typical dye solution (Rhodamine B: RhB) under ultraviolet irradiation and mechanical agitation. The results revealed a remarkable enhancement in dye degradation (90 % in 15 min for piezo-photocatalysis) compared to individual stimuli (58.2 % for photocatalysis and 95.8 % in 90 min for piezocatalysis), highlighting the synergistic effects between BTO and MXene. The enhanced catalytic performance was attributed to the efficient charge separation and transfer facilitated by the composite\'s structure, leading to increased reactive species generation and dye molecule degradation. Furthermore, the composite exhibited excellent stability and reusability, showcasing its potential for practical applications in wastewater treatment. Overall, this work represents a promising strategy for designing high-performance synergistic catalysts, addressing the pressing need for sustainable solutions in environmental remediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有效的光催化太阳能CO2还原提出了挑战,因为可见光到近红外(NIR)低能光子占太阳能的50%以上。因此,它们不能引发在CO2中解离C=O键所需的高能反应。在这项研究中,我们提出了一种利用经常未充分利用的光热(PTT)转换的新颖方法。我们独特的二维(2D)碳层嵌入的Mo2C(Mo2C-Cx)MXene催化剂在黑色中展示了优异的近红外(NIR)光吸收。这使得能够通过PTT转换机制有效利用低能光子,从而显著提高CO2光还原的速率。在集中的阳光下,最佳Mo2C-C0.5催化剂对CO的CO2还原反应速率为12000-15000μmol·g-1·h-1,对CH4的CO2还原反应速率为1000-3200μmol·g-1·h-1。值得注意的是,催化剂提供太阳能到碳燃料(STF)的转换效率在0.0108%至0.0143%之间,STFavg=0.0123%,自然阳光条件下的最高记录值。这种创新的方法强调了低频的开发,低能光子用于增强光催化CO2还原。
    Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 μmol·g-1·h-1 to CO and 1000-3200 μmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了解决与环境相关的问题(废水修复,节能和空气净化)由快速城市化和工业化引起,近年来,新型改性纳米结构光催化剂的合成受到越来越多的关注。我们在此报告了通过溶胶-凝胶法与石墨烯原位氮掺杂化学锚定的TiO2的容易合成。使用X射线衍射的结构分析表明,结晶氮掺杂的石墨烯-二氧化钛(N-GT)纳米复合材料主要由锐钛矿和少量板钛矿相组成。拉曼光谱显示,除了锐钛矿TiO2的主带外,石墨烯特征带还存在于低强度水平。X射线光电子能谱分析揭示了TiO2通过Ti-O-C键与石墨烯的化学键合,还在TiO2晶格和石墨烯纳米片的骨架中取代氮掺杂剂。UV-Vis吸收光谱分析表明,改性材料由于其带隙变窄,可以有效地吸收较长波长范围的光子。N0.06-GT材料对亚甲基蓝的降解效率最高(MB,98%)在紫外线和磺胺甲恶唑(SMX,90.0%)在可见光照射下。复合材料的活性增加归因于高表面积通过更大的吸附容量的协同效应,通过增加光子吸收缩小带隙,并通过石墨烯纳米片和缺陷位点(Ti3和氧空位(Vo))的良好电子可接受性来减少e-/h重组。ROS实验进一步描述了主要是羟基自由基(OH·)和超氧化物阴离子(O2·-)是氧化还原反应过程中污染物降解的原因。总之,我们的发现为这种新材料的制造提供了新的见解,这种材料的效率可以在H2生产等应用中进一步测试,二氧化碳转化为增值产品,在节能和储存方面。
    To solve environmental-related issues (wastewater remediation, energy conservation and air purification) caused by rapid urbanization and industrialization, synthesis of novel and modified nanostructured photocatalyst has received increasing attention in recent years. We herein report the facile synthesis of in situ nitrogen-doped chemically anchored TiO2 with graphene through sol-gel method. The structural analysis using X-ray diffraction showed that the crystalline nitrogen-doped graphene-titanium dioxide (N-GT) nanocomposite is mainly composed of anatase with minor brookite phase. Raman spectroscopy revealed the graphene characteristic band presence at low intensity level in addition to the main bands of anatase TiO2. X-ray photoelectron spectroscopy analysis disclosed the chemical bonding of TiO2 with graphene via Ti-O-C linkage, also the substitution of nitrogen dopant in both TiO2 lattice and into the skeleton of graphene nanoflakes. UV-Vis absorption spectroscopy analysis established that the modified material can efficiently absorb the longer wavelength range photons due to its narrowed band gap. The N0.06-GT material showed the highest degradation efficiency over methylene blue (MB, ∼98%) under UV and sulfamethoxazole (SMX, ∼ 90.0%) under visible light irradiation. The increased activity of the composite is credited to the synergistic effect of high surface area via greater adsorption capacity, narrowed band gap via increased photon absorption, and reduced e-/h+ recombination via good electron acceptability of graphene nanoflakes and defect sites (Ti3+ and oxygen vacancy (Vo)). The ROS experiments further depict that primarily hydroxyl radicals (OH•) and superoxide anions (O2•-) are responsible for the pollutant degradation in the process redox reactions. In summary, our findings specify new insight into the fabrication of this new material whose efficiency can be further tested in applications like H2 production, CO2 conversion to value-added products, and in energy conservation and storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光敏剂对光的吸收已被证明通过电子激发态中间体提供了新的反应途径。补充基态机制。这些策略已应用于光催化和光氧化还原催化,通过从它们的长寿命激发态产生反应性中间体来驱动。一个发展领域是光诱导配体到金属电荷转移(LMCT)催化,其中配体与金属中心的配位以及随后用光激发导致形成反应性自由基和还原的金属中心。这篇小型评论涉及过渡金属催化中配体至金属电荷转移的基础和最新进展,重点是通过这种机理实现的有机转化。
    The absorption of light by photosensitizers has been shown to offer novel reactive pathways through electronic excited state intermediates, complementing ground state mechanisms. Such strategies have been applied in both photocatalysis and photoredox catalysis, driven by generating reactive intermediates from their long-lived excited states. One developing area is photoinduced ligand-to-metal charge transfer (LMCT) catalysis, in which coordination of a ligand to a metal center and subsequent excitation with light results in the formation of a reactive radical and a reduced metal center. This mini review concerns the foundations and recent developments in ligand-to-metal charge transfer in transition metal catalysis focusing on the organic transformations made possible through this mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    开发用于减少Cr(VI)和降解抗生素的有效光催化剂仍然是一个挑战。本工作报告了一种新型异质结复合材料的开发,BiOCl/BaTiO3@Co-BDC-MOF(BOC/BTO@Co-MOF),基于溶剂热技术。要表征材料的表面和主体特征,FE-SEM等技术,HR-TEM,BET/BJH,XPS,FT-IR,p-XRD,使用UV-Vis-DRS。根据结果,BiOCl/BaTiO3纳米复合材料均匀分散在棒状Co-BDCMOF上,导致表面上的分层纹理。复合结构的另一个优点是强的界面增强,促进光激发电子-空穴对的分离。此外,与原始的同行相比,异质结构材料表现出优异的表面积和孔性能。通过优化各种分析参数,评估了还原和降解Cr(VI)/SMX污染物的光催化效率,如pH值,催化负载浓度,分析物浓度,和清道夫的角色。特别设计的BOC/BTO@Co-MOF复合材料在pH3.0的60.0-90.0分钟的可见光照射下实现了96.5%的Cr(VI)减少和98.2%的SMX降解。这种材料是高度可重复使用的,具有六次回收潜力。这项研究的结果有助于更好地了解水净化系统中无机和有机污染物的有效净化。
    The development of effective photocatalysts for the reduction of Cr(VI) and the degradation of antibiotics remains a challenge. The present work reports the development of a novel heterojunction composite material, BiOCl/BaTiO3@Co-BDC-MOF (BOC/BTO@Co-MOF), based on solvothermal techniques. To characterize the surface and bulk features of the material, techniques such as FE-SEM, HR-TEM, BET/BJH, XPS, FT-IR, p-XRD, and UV-Vis-DRS were used. Based on the results, the BiOCl/BaTiO3 nanocomposites are uniformly dispersed on the rod-shaped Co-BDC MOF, resulting in a layered texture on the surface. A further advantage of the composite structure is the strong interfacial enhancement facilitating the separation of photoexcited electron-hole pairs. Also, compared to its pristine counterparts, the heterostructure material exhibited excellent surface area and pore properties. The photocatalytic efficiency towards reduction and degradation of Cr(VI)/SMX pollutants were evaluated by optimizing various analytical parameters, such as pH, catalytic loading concentrations, analyte concentration, and scavenger role. The specially designed BOC/BTO@Co-MOF composite achieved a 96.5% Cr(VI) reduction and 98.2% SMX degradation under 60.0-90.0 min of visible light illumination at pH 3.0. This material is highly reusable and has a six-time recycling potential. The findings of this study contribute to a better understanding of the efficient decontamination of inorganic and organic pollutants in water purification systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    药物污染物的广泛使用严重威胁着环境和人类福祉。在本研究中,铁酸锌纳米颗粒(ZnFe2O4NPs)已通过共沉淀法合成,并用作光催化剂降解两种最常用的止痛药,吡罗昔康(PXM)和扑热息痛(PCM),通过太阳光下的异质芬顿过程。合成的ZnFe2O4NP显示出较窄的带隙,即1.87eV,表示在可见光范围内有效工作的能力。在光催化应用的背景下,优化操作条件以实现最大降解。PCM和PXM在优化的光催化剂量(20mgL-1)下完全降解(100%),反应时间(180分钟)初始药物浓度(10mgL-1),和pH(6.0),这是接近自然环境。TheextentofmineralizationasestimatedbythereductionofTOCwasobservedtobe~91and82%forPCMandPXMrespectively.动力学研究表明,光催化降解遵循伪一级动力学。此外,在连续五个反应循环后,ZnFe2O4NPs保留了90%的光催化活性,催化剂具有较高的可重用性和稳定性。
    The widespread use of pharmaceutical pollutants seriously threatens the environment and human well-being. In the present study, zinc ferrite nanoparticles (ZnFe2O4 NPs) have been synthesized by co-precipitation method and used as photocatalyst for the degradation of two most commonly prescribed painkillers, piroxicam (PXM) and paracetamol (PCM), via heterogenous Fenton process under the solar light. The synthesized ZnFe2O4 NPs showed a narrower band gap i.e. 1.87 eV, signifying the ability to efficiently work in visible light range. In the context of photocatalytic applications, the operational conditions were optimized to achieve maximum degradation. PCM and PXM were completely degraded (100%) at the optimized photocatalytic dose (20 mg L-1), reaction time (180 minutes), initial drug concentration (10 mg L-1), and pH (6.0), which is close to the natural environment. The extent of mineralization as estimated by the reduction of TOC was observed to be ∼ 91 and 82% for PCM and PXM respectively. Kinetic studies revealed that photocatalytic degradation followed pseudo-first-order kinetics. Moreover, the ZnFe2O4 NPs retained ∼ 90 % of photocatalytic activity after five consecutive reaction cycles, showing high reusability and stability of catalyst.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号