Phosphoinositol-3-kinase

  • 文章类型: Preprint
    2型神经纤维瘤病(NF2)相关神经鞘瘤病是一种遗传性疾病,可导致多种类型的神经系统肿瘤的发展。原发性和诊断性肿瘤类型是双侧前庭神经鞘瘤。NF2没有治愈或药物治疗。推荐的治疗方法包括手术切除和放疗,这两种情况都会使患者出现严重的神经功能缺损或增加未来恶性肿瘤的风险。我们先前的先导高通量药物筛选的结果基于小鼠merlin缺陷雪旺氏细胞(MD-SC)的生存力丧失,将磷酸肌醇3-激酶(PI3K)抑制剂鉴定为强候选物。在这里,我们使用新型人类神经鞘瘤模型细胞进行组合药物筛选。我们确定了一种I类PI3K抑制剂,pictilisib和p21活化激酶(PAK)抑制剂,由于在细胞活力测定中的高协同作用,PF-3758309作为顶部组合。在原位同种异体移植小鼠模型中,单一和组合疗法均显著降低小鼠MD-SC的生长。抑制剂组合促进小鼠merlin缺陷型施万(MD-SC)细胞中的细胞周期停滞和凋亡,并促进人MD-SC中的细胞周期停滞。这项研究确定了PI3K和PAK途径作为NF2相关神经鞘瘤病联合药物治疗的潜在靶标。
    Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Excitotoxicity is classically attributed to Ca2+ influx through NMDA receptors (NMDAr), leading to production of nitric oxide by neuronal nitric oxide synthase and superoxide by mitochondria, which react to form highly cytotoxic peroxynitrite. More recent observations warrant revision of the classic view and help to explain some otherwise puzzling aspects of excitotoxic cell injury. Studies using pharmacological and genetic approaches show that superoxide produced by NMDAr activation originates primarily from NADPH oxidase rather than from mitochondria. As NADPH oxidase is localized to the plasma membrane, this also provides an explanation for the extracellular release of superoxide and cell-to-cell \"spread\" of excitotoxic injury observed in vitro and in vivo. The signaling pathway linking NMDAr to NADPH oxidase involves Ca2+ influx, phosphoinositol-3-kinase, and protein kinase Cζ, and interventions at any of these steps can prevent superoxide production and excitotoxic injury. Ca2+ influx specifically through NMDAr is normally required to induce excitotoxicity, through a mechanism presumed to involve privileged Ca2+ access to local signaling domains. However, experiments using selective blockade of the NMDAr ion channel and artificial reconstitution of Ca2+ by other routes indicate that the special effects of NMDAr activation are attributable instead to concurrent non-ionotropic NMDAr signaling by agonist binding to NMDAr. The non-ionotropic signaling driving NADPH oxidase activation is mediated in part by phosphoinositol-3-kinase binding to the C-terminal domain of GluN2B receptor subunits. These more recently identified aspects of excitotoxicity expand our appreciation of the complexity of excitotoxic processes and suggest novel approaches for limiting neuronal injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues including the nervous system. Neuroprotective and neuroregenerative functions of Epo in mammals are mediated through receptor-associated Janus kinase 2 and intracellular signaling cascades that modify the transcription of Epo-regulated genes. Signal transducers and activators of transcription (STAT) and phosphoinositol-3-kinase (PI3K) represent key components of two important Epo-induced transduction pathways. Our previous study on insects revealed neuroprotective and regenerative functions of recombinant human Epo (rhEpo) similar to those in mammalian nervous tissues. Here we demonstrate that rhEpo effectively rescues primary cultured locust brain neurons from apoptotic cell death induced by hypoxia or the chemical compound H-7. The Janus kinase inhibitor AG-490 and the STAT inhibitor sc-355797 abolished protective effects of rhEpo on locust brain neurons. In contrast, inhibition of PI3K with LY294002 had no effect on rhEpo-mediated neuroprotection. The results indicate that rhEpo mediates the protection of locust brain neurons through interference with apoptotic pathways by the activation of a Janus kinase-associated receptor and STAT transcription factor(s). The involvement of similar transduction pathways in mammals and insects for the mediation of neuroprotection and support of neural regeneration by Epo indicates that an Epo/Epo receptor-like signaling system with high structural and functional similarity exists in both groups of animals. Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OBJECTIVE: To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors, in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand (TRAIL), on overcoming TRAIL resistance in hepatocellular carcinoma (HCC) and to study the efficacy of agonistic TRAIL antibodies, as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis.
    METHODS: Surface expression of TRAIL receptors (TRAIL-R1-4) and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-x(L) were analyzed by flow cytometry and Western blotting, respectively. Knock-down of MCL-1 and BCL-x(L) was performed by transfecting specific small interfering RNAs. HCC cells were treated with kinase inhibitors and chemotherapeutic drugs. Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
    RESULTS: TRAIL-R1 and -R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However, treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates. Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002 [inhibition of phosphoinositol-3-kinase (PI3K)], AG1478 (epidermal growth factor receptor kinase), PD98059 (MEK1), rapamycin (mammalian target of rapamycin) and the multi-kinase inhibitor Sorafenib. Furthermore, the antiapoptotic BCL-2 proteins MCL-1 and BCL-x(L) play a major role in TRAIL resistance: knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells. Additionally, knock-down of MCL-1 and BCL-x(L) led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.
    CONCLUSIONS: Our data identify the blockage of survival kinases, combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号