Phenolic fructosides

  • 文章类型: Journal Article
    酶促果糖糖基化已成为通过引入糖部分来增强多酚亲水性的策略,导致酚类糖苷的发展,表现出改善的溶解度,稳定性,和与其非糖基化形式相比的生物活性。本研究详细分析了五种酚类果糖苷(4MFPh,MFF,DFPh,MFPh,和MFPu)和12种蛋白质(11β-HS1,CRP,DPPIV,国税局,PPAR-γ,GK,AMPK,IR,GFAT,IL-1β,IL-6和TNF-α)与T2DM的发病机制有关。对于根皮苷果糖苷(DFPh)与IR(-16.8kcal/mol)和GFAT(-16.9kcal/mol)的相互作用最强。具有11β-HS1(-13.99kcal/mol)和GFAT(-12.55kcal/mol)的MFPh。具有GFAT(-11.79kcal/mol)和IR(-12.11kcal/mol)的4MFPh。MFF与AMPK(-9.10kcal/mol)和PPAR-γ(-9.71kcal/mol),其次是葛根素和阿魏酸单果糖苷。果糖苷组的自由能结合值比对照组低,二甲双胍和西格列汀。氢键(HB)被确定为主要的相互作用机制,具有特定的极性氨基酸,如血清,谷氨酰胺,谷氨酸,苏氨酸,天冬氨酸,赖氨酸被确定为关键贡献者。ADMET结果表明果糖苷的吸收和分布特征良好。这些发现为进一步探索酚类果糖苷作为T2DM的潜在治疗药物提供了有价值的信息。
    Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11β-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11β-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究表征了氧化葡糖杆菌(LS1)的左旋蔗糖酶(LSs)的受体特异性,纳氏弧菌(LS2),新香藻(LS3),和使用蔗糖作为果糖基供体并选择酚类化合物和碳水化合物作为受体的Paraburkholderiagraminis(LS4)。总的来说,V.natriegensLS2被证明是酚类化合物转果糖糖基化的最佳生物催化剂。多于一个果糖基单元可以连接到果糖糖基化的酚类化合物上。graminisLS4对表儿茶素的转果糖糖基化导致了最多样化的产品,转移了多达五个果糖基单位。除了LS源,发现LS对酚类化合物及其转果糖糖基化产物的受体特异性在很大程度上取决于它们的化学结构:酚环的数量,羟基的反应性和脂族链或甲氧基的存在。同样,对于碳水化合物,转果糖的产量取决于LS来源和受体类型。LS2催化的麦芽糖转果糖化产生的果糖糖基化三糖的产量最高,产量达到200g/L。LS2对酚类化合物和碳水化合物的转果糖糖基化更具选择性,而LS1、LS3和LS4催化的反应也产生低聚果糖。这项研究显示了LSs在酚类化合物和碳水化合物的糖基化中的应用潜力。
    This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号