Phage

噬菌体
  • 文章类型: Journal Article
    抗生素的过度使用导致抗生素耐药菌株的出现,比如多重耐药,广泛耐药,和抗pandrug细菌。由这些菌株引起的感染的治疗已经成为一个巨大的挑战。在后抗生素时代,噬菌体疗法是解决这个问题的一个有吸引力的解决方案,一些成功的1期和2期研究已经证明了噬菌体疗法在过去十年中的有效性和安全性。这是进化医学的一种形式,噬菌体表现出免疫调节和抗炎特性。然而,噬菌体疗法受到因素的限制,如宿主菌株的窄谱,体内特殊的药代动力学和药效学,免疫反应,以及噬菌体抗性的发展。本综述的目的是比较裂解噬菌体和化学抗生素治疗细菌感染的效力。噬菌体疗法的优点是副作用少,自我复制,进化,细菌生物膜根除,与化学抗生素相比的免疫调节和抗炎特性。同时,噬菌体疗法的缺点包括可用宿主菌株的窄谱,体内特殊的药代动力学和药效学,免疫反应,和噬菌体抵抗障碍。最近,一些研究人员继续努力克服噬菌体疗法的这些局限性。噬菌体疗法将是治疗抗生素抗性细菌感染的可选方案的一个受欢迎的补充。我们专注于噬菌体疗法的优点和局限性,旨在利用优点并克服局限性。
    The overuse of antibiotics has caused the emergence of antibiotic-resistant strains, such as multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria. The treatment of infections caused by such strains has become a formidable challenge. In the post-antibiotic era, phage therapy is an attractive solution for this problem and some successful phase 1 and 2 studies have demonstrated the efficacy and safety of phage therapy over the last decade. It is a form of evolutionary medicine, phages exhibit immunomodulatory and anti-inflammatory properties. However, phage therapy is limited by factors, such as the narrow spectrum of host strains, the special pharmacokinetics and pharmacodynamics in vivo, immune responses, and the development of phage resistance. The aim of this minireview was to compare the potencies of lytic phages and chemical antibiotics to treat bacterial infections. The advantages of phage therapy has fewer side effects, self-replication, evolution, bacterial biofilms eradication, immunomodulatory and anti-inflammatory properties compared with chemical antibiotics. Meanwhile, the disadvantages of phage therapy include the narrow spectrum of available host strains, the special pharmacokinetics and pharmacodynamics in vivo, immune responses, and phage resistance hurdles. Recently, some researchers continue to make efforts to overcome these limitations of phage therapy. Phage therapy will be a welcome addition to the gamut of options available for treating antibiotic-resistant bacterial infections. We focus on the advantages and limitations of phage therapy with the intention of exploiting the advantages and overcoming the limitations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多重耐药肺炎克雷伯菌(MDR-KP)在全球医疗保健领域构成了重大挑战。强调创新治疗方法的紧迫性。在抗生素耐药性上升的情况下,噬菌体疗法成为一种有前途的策略,强调鉴定和表征临床使用的有效噬菌体资源的关键需求。在这项研究中,我们介绍了一种新的裂解噬菌体,RCIP0100,由于与已知噬菌体家族的遗传相似性较低,因此根据国际病毒分类学委员会(ICTV)标准将其分类为朝阳病毒属和Fjlabviridae家族。我们的发现表明,RCIP0100对27种测试的MDR-KP菌株中的15种表现出广泛的裂解活性,包括不同的概况,如碳青霉烯类耐药肺炎克雷伯菌(CR-KP)。这将噬菌体RCIP0100定位为噬菌体疗法的有希望的候选者。对RCIP0100耐药的菌株也显示出对各种抗生素的敏感性增加,暗示协同使用RCIP0100和抗生素作为针对MDR-KP的战略对策的潜力。
    Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a significant challenge in global healthcare, underscoring the urgency for innovative therapeutic approaches. Phage therapy emerges as a promising strategy amidst rising antibiotic resistance, emphasizing the crucial need to identify and characterize effective phage resources for clinical use. In this study, we introduce a novel lytic phage, RCIP0100, distinguished by its classification into the Chaoyangvirus genus and Fjlabviridae family based on International Committee on Taxonomy of Viruses (ICTV) criteria due to low genetic similarity to known phage families. Our findings demonstrate that RCIP0100 exhibits broad lytic activity against 15 out of 27 tested MDR-KP strains, including diverse profiles such as carbapenem-resistant K. pneumoniae (CR-KP). This positions phage RCIP0100 as a promising candidate for phage therapy. Strains resistant to RCIP0100 also showed increased susceptibility to various antibiotics, implying the potential for synergistic use of RCIP0100 and antibiotics as a strategic countermeasure against MDR-KP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    噬菌体是地球上最丰富的生物实体,但是我们对它们生命周期的许多方面的理解仍然不完整。这里,我们从结构上分析了噬菌体CasadabanvirusJBD30的感染周期.使用它的底板,JBD30通过细菌IV型菌毛附着于铜绿假单胞菌,其随后的缩回将噬菌体带到细菌细胞表面。基板-菌毛复合物的低温电子显微镜结构表明,基板受体结合蛋白的三脚架附着在细菌外膜上。然后三脚架和底板打开以释放三个卷尺蛋白质的副本,随后是DNA喷射的事件。JBD30主要衣壳蛋白组装成衣壳原,用噬菌体dsDNA填充后直径扩大7%。充满DNA的头部最终与180纳米长的尾巴相连,容易弯曲,因为柔性环介导主要尾巴蛋白的连续盘之间的接触。这里描述的结构特征和复制机制可能在利用IV型菌毛进行初始细胞附着的虹吸管中是保守的。
    Bacteriophages are the most abundant biological entities on Earth, but our understanding of many aspects of their lifecycles is still incomplete. Here, we have structurally analysed the infection cycle of the siphophage Casadabanvirus JBD30. Using its baseplate, JBD30 attaches to Pseudomonas aeruginosa via the bacterial type IV pilus, whose subsequent retraction brings the phage to the bacterial cell surface. Cryo-electron microscopy structures of the baseplate-pilus complex show that the tripod of baseplate receptor-binding proteins attaches to the outer bacterial membrane. The tripod and baseplate then open to release three copies of the tape-measure protein, an event that is followed by DNA ejection. JBD30 major capsid proteins assemble into procapsids, which expand by 7% in diameter upon filling with phage dsDNA. The DNA-filled heads are finally joined with 180-nm-long tails, which bend easily because flexible loops mediate contacts between the successive discs of major tail proteins. It is likely that the structural features and replication mechanisms described here are conserved among siphophages that utilize the type IV pili for initial cell attachment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为一种能够引起严重疾病的食源性病原体,早期检测大肠杆菌O157:H7(E.大肠杆菌O157:H7)对于确保食品安全至关重要。虽然Förster共振能量转移(FRET)是一种高效而精确的检测技术,仍然需要扩增策略来检测低浓度的大肠杆菌O157:H7。在这项研究中,我们提出了一个噬菌体(M13)诱导的“一对多”FRET平台,用于灵敏检测大肠杆菌O157:H7。适体,将其特异性识别大肠杆菌O157:H7附着到磁珠上作为捕获探针,用于从食物样品中分离大肠杆菌O157:H7。肽O157S,特异性靶向大肠杆菌O157:H7和链霉亲和素结合肽(SBP),与链霉亲和素(SA)结合,分别显示在M13的P3和P8蛋白上,构建O157S-M13K07-SBP噬菌体作为信号输出的检测探针。由于P8蛋白的两个相邻N端之间的精确距离(≈3.2nm),SA标记的FRET供体和受体可以通过SA和SBP的结合固定在O157S-M13K07-SBP表面的Förster距离处,诱导FRET。此外,P8蛋白,约2700份,启用多次FRET(≈605)发生,在每个大肠杆菌O157:H7识别事件中扩增FRET。基于O157S-M13K07-SBP的FRET传感器可以以低至6CFU/mL的浓度检测大肠杆菌O157:H7,并在选择性方面表现出优异的性能,检测时间(≈3小时),准确度,精度,实际应用,和储存稳定性。总之,我们开发了一个强大的工具来检测食品安全中的各种目标,环境监测,和医学诊断。
    As a foodborne pathogen capable of causing severe illnesses, early detection of Escherichia coli O157:H7 (E. coli O157:H7) is crucial for ensuring food safety. While Förster resonance energy transfer (FRET) is an efficient and precise detection technique, there remains a need for amplification strategies to detect low concentrations of E. coli O157:H7. In this study, we presented a phage (M13)-induced \"one to many\" FRET platform for sensitively detecting E. coli O157:H7. The aptamers, which specifically recognize E. coli O157:H7 were attached to magnetic beads as capture probes for separating E. coli O157:H7 from food samples. The peptide O157S, which specifically targets E. coli O157:H7, and streptavidin binding peptide (SBP), which binds to streptavidin (SA), were displayed on the P3 and P8 proteins of M13, respectively, to construct the O157S-M13K07-SBP phage as a detection probe for signal output. Due to the precise distance (≈3.2 nm) between two neighboring N-terminus of P8 protein, the SA-labeled FRET donor and acceptor can be fixed at the Förster distance on the surface of O157S-M13K07-SBP via the binding of SA and SBP, inducing FRET. Moreover, the P8 protein, with ≈2700 copies, enabled multiple FRET (≈605) occurrences, amplifying FRET in each E. coli O157:H7 recognition event. The O157S-M13K07-SBP-based FRET sensor can detect E. coli O157:H7 at concentration as low as 6 CFU/mL and demonstrates excellent performance in terms of selectivity, detection time (≈3 h), accuracy, precision, practical application, and storage stability. In summary, we have developed a powerful tool for detecting various targets in food safety, environmental monitoring, and medical diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    鲍曼不动杆菌(A.鲍曼不动)由于其臭名昭著的抗菌素耐药性而构成了严重的公共卫生挑战,特别是耐碳青霉烯的鲍曼不动杆菌(CRAB)。在这项研究中,我们分离出了一个有毒的噬菌体,命名为P1068,来自能够裂解CRAB的医疗废水,主要针对K3胶囊类型。基本表征显示,P1068以1的最佳MOI感染鲍曼不动杆菌ZWAb014,经历了十分钟的潜伏期,并且在4°C至37°C的温度范围和3-10的pH范围内保持稳定。系统发育和平均核苷酸同一性分析表明,根据国际病毒分类学委员会(ICTV)发布的最新病毒分类,P1068可被归类为Caudoviricetes类的Obolenskviricetes属中的新物种。此外,根据经典的形态学分类,P1068被鉴定为T4样噬菌体(Myoviridae)。有趣的是,我们发现P1068的尾纤维蛋白(TFP)与T7样噬菌体(Podovirridae)的TFP具有74%的覆盖率和88.99%的同一性,AbKT21phiIII(NC_048142.1)。这一发现表明噬菌体的TFP基因可能经历不同属和形态的水平转移。体外抗微生物试验表明,P1068在生物膜和浮游状态下都表现出对鲍曼不动杆菌的抗微生物活性。在腹腔感染的小鼠模型中,P1068噬菌体保护小鼠免受鲍曼不动杆菌感染,并显着降低各种组织如脑中的细菌负荷,血,肺,脾,脾和肝脏与对照组相比。总之,这项研究表明,噬菌体P1068可能是治疗耐碳青霉烯和生物膜形成鲍曼不动杆菌感染的潜在候选者,扩大了对噬菌体TFP基因水平转移的认识。
    Acinetobacter baumannii (A. baumannii) poses a serious public health challenge due to its notorious antimicrobial resistance, particularly carbapenem-resistant A. baumannii (CRAB). In this study, we isolated a virulent phage, named P1068, from medical wastewater capable of lysing CRAB, primarily targeting the K3 capsule type. Basic characterization showed that P1068 infected the A. baumannii ZWAb014 with an optimal MOI of 1, experienced a latent period of ten minutes and maintained stability over a temperature range of 4 °C to 37 °C and pH range of 3-10. Phylogenetic and average nucleotide identity analyses indicate that P1068 can be classified as a novel species within the genus Obolenskvirus of the Caudoviricetes class as per the most recent virus classification released by the International Committee on Taxonomy of Viruses (ICTV). Additionally, according to classical morphological classification, P1068 is identified as a T4-like phage (Myoviridae). Interestingly, we found that the tail fibre protein (TFP) of P1068 shares 74% coverage and 88.99% identity with the TFP of a T7-like phage (Podoviridae), AbKT21phiIII (NC_048142.1). This finding suggests that the TFP gene of phages may undergo horizontal transfer across different genera and morphologies. In vitro antimicrobial assays showed that P1068 exhibited antimicrobial activity against A. baumannii in both biofilm and planktonic states. In mouse models of intraperitoneal infection, P1068 phage protected mice from A. baumannii infection and significantly reduced bacterial loads in various tissues such as the brain, blood, lung, spleen, and liver compared to controls. In conclusion, this study demonstrates that phage P1068 might be a potential candidate for the treatment of carbapenem-resistant and biofilm-forming A. baumannii infections, and expands the understanding of horizontal transfer of phage TFP genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已发现肠出血性大肠杆菌O157:H7(EHECO157:H7)和产肠毒素大肠杆菌(ETEC)容易在黄瓜(CucumissativusL.)上形成生物膜,对即食蔬菜的安全构成重大风险。本研究旨在评估裂解噬菌体vB_EcoM_SQ17(SQ17)对黄瓜上EHECO157:H7和ETEC生物膜的有效性。这里,我们评估了噬菌体SQ17对EHECO157:H7和ETEC菌株在各种表面上形成和减少生物膜的功效,包括聚苯乙烯,聚-D-赖氨酸预涂层薄膜,还有鲜切的黄瓜,在不同的温度。噬菌体SQ17显著抑制ETEC生物膜的形成,在37°C时将粘附细胞的数量减少0.15logCFU/mL。通过SEM观察,用噬菌体SQ17处理也显着减少了建立的生物膜中粘附细胞的数量。此外,噬菌体SQ17在孵育24小时后,在37°C下有效地将EHECO157:H7和ETEC生物膜的生物量降低了54.8%以上。噬菌体处理后,在4°C和25°C下,在黄瓜上的生物膜中,粘附的EHECO157:H7细胞的活力降低了1.37logCFU/片和0.46logCFU/片,分别。同样,在4°C和25°C下,黄瓜上的生物膜中ETEC细胞的活力降低了1.07logCFU/片和0.61logCFU/片,分别。这些发现表明,噬菌体SQ17有望作为根除黄瓜上致病性大肠杆菌生物膜的潜在策略。
    Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) and Enterotoxigenic E. coli (ETEC) have been found to readily develop biofilms on cucumber (Cucumis sativus L.), presenting a significant risk to the safety of ready-to-eat vegetables. This study aimed to assess the effectiveness of the lytic bacteriophage vB_EcoM_SQ17 (SQ17) against EHEC O157:H7 and ETEC biofilms on cucumber. Here, we evaluated the efficacy of phage SQ17 on the formation and reduction of biofilms formed by EHEC O157:H7 and ETEC strains on various surfaces, including polystyrene, poly-d-lysine precoated films, and fresh-cut cucumber, at different temperatures. Phage SQ17 significantly inhibited ETEC biofilm formation, reducing the number of adhered cells by 0.15 log CFU/mL at 37 °C. Treatment with phage SQ17 also significantly decreased the number of adhered cells in established biofilms via SEM observation. Moreover, phage SQ17 effectively reduced the biomass of EHEC O157:H7 and ETEC biofilms by over 54.8 % at 37 °C after 24 h of incubation. Following phage treatment, the viability of adhered EHEC O157:H7 cells decreased by 1.37 log CFU/piece and 0.46 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. Similarly, the viability of ETEC cells decreased by 1.07 log CFU/piece and 0.61 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. These findings suggest that phage SQ17 shows promise as a potential strategy for eradicating pathogenic E. coli biofilms on cucumber.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    两种肺炎克雷伯菌噬菌体,YMR1和YMR2形成带光晕的斑块,从首尔的污水中分离出来,韩国。YMR1和YMR2具有40,338bp和40,756bp的双链DNA基因组,具有49和52个预测的蛋白质编码基因,分别。两者都被预测为自拟病毒科的成员。
    Two Klebsiella pneumoniae bacteriophages, YMR1 and YMR2, which form plaques with halos, were isolated from sewage in Seoul, South Korea. YMR1 and YMR2 have double-stranded DNA genomes of 40,338 bp and 40,756 bp with 49 and 52 predicted protein-coding genes, respectively. Both are predicted to be members of the family Autographiviridae.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这里,我们描述了从污水中分离的枯草芽孢杆菌噬菌体。噬菌体fHSPT3是针对宿主枯草芽孢杆菌168分离的,基因组大小为150,187bp,具有221个蛋白质编码序列。fHSPT3属于Siophivirus属,缺乏毒力或抗生素抗性基因,并显示了通过PhageScope和PhageAI预测的毒力生命周期。
    Here, we describe a Bacillus subtilis bacteriophage isolated from sewage water. The phage fHSPT3 was isolated against the host Bacillus subtilis 168 and has a genome size of 150,187 bp with 221 protein-coding sequences. The fHSPT3 belongs to the genus Siophivirus, lacks virulence or antibiotic resistance genes, and shows a virulent life cycle predicted through PhageScope and PhageAI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌鬼影(BG)被描述为保留其结构但缺乏细胞质内容物的细菌细胞包膜。BG的研究跨越多个学科领域,和BG生产技术的发展,以获得充足和稳定的BG样品具有重要意义的探测BG的生物学特性,设计新的疾病治疗策略,并利用其工业应用。噬菌体(噬菌体)基因组中编码的许多产物具有裂解细菌的能力,从而主要通过破坏细菌细胞壁完整性来诱导BG形成。这篇综述全面调查了噬菌体编码蛋白在BG生产技术中的应用。包括方法,如噬菌体E蛋白介导的裂解,穿孔素蛋白诱导的裂解,以及将E蛋白与holin-内溶素系统结合的策略。此外,提供了关于当前应用程序的讨论和摘要,挑战,以及与不同技术相关的修改策略。通过对BG生产技术的重点探索,重点是使用噬菌体编码的蛋白质技术精确操纵BG的形成,这项研究旨在提供可靠的工具和方法来深入研究BG形成的潜在机制,以及基于BG的新型治疗策略和应用的开发。
    Bacterial ghosts (BGs) are described as bacterial cell envelopes that retain their structure but lack cytoplasmic contents. The study of BGs spans multiple disciplinary domains, and the development of BG production techniques to obtain ample and stable BG samples holds significant implications for probing the biological characteristics of BGs, devising novel disease treatment strategies, and leveraging their industrial applications. Numerous products encoded within bacteriophage (phage) genomes possess the capability to lyse bacteria, thereby inducing BG formation primarily via disruption of bacterial cell wall integrity. This review comprehensively surveys the utilization of phage-encoded proteins in BG production techniques, encompassing methodologies such as phage E protein-mediated lysis, perforin protein-induced lysis, and strategies combining E protein with holin-endolysin systems. Additionally, discussions and summaries are provided on the current applications, challenges, and modification strategies associated with different techniques. Through a focused exploration of BG production techniques, with an emphasis on precise manipulation of BG formation using phage-encoded protein technologies, this study aims to furnish robust tools and methodologies for delving into the mechanisms underlying BG formation, as well as for the development of novel therapeutic strategies and applications based on BGs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    噬菌体是生物圈中最普遍和最多样化的实体,代表了能够自我复制的最简单的系统。通过噬菌体研究揭示了转录调控的许多基本概念。噬菌体在细菌内的复制需要劫持宿主转录机制。通常,这是通过与宿主RNA聚合酶结合并修饰其特征的噬菌体基因组编码的蛋白质和RNA来实现的。了解这些过程为细菌转录本身的机制提供了有价值的见解。历史上,X射线晶体学一直是阐明噬菌体转录调控的结构基础的主要工具。近年来,冷冻电子显微镜的应用不仅允许在近原子分辨率下探索蛋白质-蛋白质和蛋白质-核酸相互作用,而且还捕获了瞬时中间状态,进一步扩大我们对噬菌体转录调控机制的理解。
    Phages are the most prevalent and diverse entities in the biosphere and represent the simplest systems that are capable of self-replication. Many fundamental concepts of transcriptional regulation were revealed through phage studies. The replication of phages within bacteria entails the hijacking of the host transcription machinery. Typically, this is accomplished through proteins and RNAs encoded by the phage genome that bind to the host RNA polymerase and modify its characteristics. Understanding these processes offers valuable insights into the mechanisms of bacterial transcription itself. Historically, X-ray crystallography has been the major tool for elucidating the structural basis of phage transcriptional regulation. In recent years, the application of cryoelectron microscopy has not only allowed the exploration of protein-protein and protein-nucleic acid interactions at near-atomic resolution but also captured transient intermediate states, further expanding our mechanistic understanding of phage transcriptional regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号