PglL

  • 文章类型: Journal Article
    蛋白质糖基化是在生命的所有域中观察到的普遍存在的过程。在人类病原体鲍曼不动杆菌内,毒力需要O-连接的糖基化;然而,糖基化事件的目标和保守性仍然不明确。在这项工作中,通过证明菌株特异性聚糖电子转移/高能碰撞解离(EThcD)触发对细菌糖蛋白质组学的价值,我们扩展了我们对鲍曼不动杆菌内糖基化的广度和位点特异性的理解.通过将量身定制的EThcD触发机制与互补糖肽富集方法偶联,我们评估了三个鲍曼不动杆菌菌株(ATCC19606,BAL062和D1279779)的可观察到的糖蛋白组。结合糖肽富集技术,包括离子迁移率(FAIMS),金属氧化物亲和色谱(二氧化钛),和亲水相互作用液相色谱(ZIC-HILIC),以及使用多种蛋白酶(胰蛋白酶,GluC,胃蛋白酶,和热解),我们将已知的鲍曼不动杆菌(A.baumannii)糖蛋白质组扩展为含有42个糖基化位点的33个独特的糖蛋白。我们证明,丝氨酸是进行糖基化的唯一残基,其中丝氨酸取代了苏氨酸,从而在模型糖蛋白中消除了糖基化。由576个参考基因组构建的鲍曼不动杆菌全基因组鉴定出丝氨酸糖基化位点是高度保守的。结合这项工作扩展了我们对鲍曼不动杆菌O-连接糖基化的保守性和位点特异性的了解。
    Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    整个伯克霍尔德菌属的O-连接蛋白糖基化是高度保守的。虽然糖基化的抑制已被证明对洋葱伯克霍尔德氏菌复合物种的毒力有害,比如伯克霍尔德氏菌,关于特定的糖基化位点如何影响蛋白质功能知之甚少。在这项研究中,我们试图提高我们对广度的理解,动力学,以及对穿过隐血芽孢杆菌O-糖蛋白组的糖基化的要求。使用互补的糖蛋白质组学方法评估跨不同培养基的白头蛇糖蛋白质组,我们将已知的糖蛋白质组增加到141个糖蛋白。利用这些糖蛋白,我们使用数据独立采集(DIA)定量评估了白头蛇的糖蛋白质组,揭示了在大多数糖蛋白组成型表达的条件下,白头蛇的糖蛋白质组在很大程度上是稳定的.对不存在糖基化如何影响糖蛋白质组的研究表明,只有五种糖蛋白(BCAL1086,BCAL2974,BCAL0525,BCAM0505和BCAL0127)的蛋白质丰度因糖基化丧失而改变。评估ΔfliF(ΔBCAL0525),ΔmotB(ΔBCAL0127),和ΔBCAM0505菌株,我们证明了FliF的损失,在较小程度上,反映了在ΔpglL中不存在糖基化时观察到的蛋白质组效应。虽然MotB和FliF对于运动都是必不可少的,我们发现MotB或FliF中糖基化位点的丢失不会影响运动性,支持这些位点对于功能是不必要的。结合这项工作拓宽了我们对隐血芽孢杆菌糖蛋白组的理解,支持在不存在糖基化的情况下糖蛋白的损失不是蛋白质功能需要糖基化的指标。
    目的:伯克霍尔德氏菌是囊性纤维化社区中值得关注的机会性病原体。尽管在过去的20年中,人们对B.cenocepacia的独特生理学有了更多的了解,但对蛋白质组尤其是O-糖蛋白组的全面了解,缺乏。在这项研究中,我们利用系统生物学方法来扩展已知的白头蛇芽孢杆菌糖蛋白组,并跟踪跨生长阶段的糖蛋白的动力学,培养基和响应糖基化的丧失。我们表明,白头蛇的糖蛋白质组在各种条件下基本上是稳定的,并且糖基化的丧失仅影响五种糖蛋白,包括运动性相关蛋白FliF和MotB。检查MotB和FliF显示,虽然这些蛋白质对运动至关重要,糖基化是可有可无的。结合这项工作,可以支持B.cenepacia糖基化对于蛋白质功能是可有可无的,并且可能会影响蛋白质的稳定性。
    Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function.
    OBJECTIVE: Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖基化是所有生命王国中最常见的蛋白质翻译后修饰之一。不同的单糖和多糖可以连接到一系列产生N-糖基化的氨基酸残基,O-糖基化,C-糖基化,S-糖基化,以及P-糖基化。真核糖基化系统在内质网(ER)和高尔基体中蛋白质折叠过程中的功能已得到充分研究。近十年来,越来越多的证据表明,细菌和古细菌中存在寡糖转移酶(OST)。特别是,空肠弯曲杆菌的寡糖转移酶(PglB)和脑膜炎奈瑟菌的寡糖转移酶(PglL)是最典型的OST,可催化细菌N-连接糖基化和O-连接糖基化,分别。作为糖缀合物疫苗施用的糖蛋白已被证明是有效的预防性的,以保护抵抗多种病原细菌。糖蛋白的化学合成复杂且昂贵,这限制了其在糖缀合物疫苗开发中的应用。然而,研究表明,糖蛋白的生物合成可以通过转移PglB来实现,编码底物蛋白的质粒,或PglL,编码聚糖合成大肠杆菌的基因的质粒。该策略可应用于使用工程化宿主大肠杆菌开发糖缀合物疫苗。本文综述了细菌OST的结构和作用机制。PglB和PglL,并讨论了它们在糖缀合物疫苗设计中的潜在应用。
    Glycosylation is one of the most common post-translational modifications of proteins across all kingdoms of life. Diverse monosaccharides and polysaccharides can be attached to a range of amino acid residues generating N-glycosylation, O-glycosylation, C-glycosylation, S-glycosylation, as well as P-glycosylation. The functions of the eukaryotic glycosylation system during protein folding in the endoplasmic reticulum (ER) and Golgi are well-studied. Increasing evidence in the recent decade has demonstrated the presence of oligosaccharyltransferases (OSTs) in bacteria and archaea. In particular, the oligosaccharyltransferase (PglB) of Campylobacter jejuni and oligosaccharyltransferase (PglL) enzyme of Neisseria meningitidis are the most characterized OSTs that catalyze bacterial N-linked glycosylation and O-linked glycosylation, respectively. Glycoprotein administered as glycoconjugate vaccines have been shown to be effective prophylactic to protect against numerous pathogenic bacteria. The chemical synthesis of glycoproteins is complex and expensive, which limits its application to the development of glycoconjugate vaccines. However, studies have demonstrated that the biosynthesis of glycoproteins is realizable by transferring PglB, a plasmid encoding a substrate protein, or PglL, a plasmid encoding genes for glycan synthesis to Escherichia coli. This strategy can be applied to the development of glycoconjugate vaccines using engineered host E. coli. This review summarizes the structure and mechanism of action of the bacterial OSTs, PglB and PglL, and discusses their potential application to glycoconjugate vaccine design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    O连接的蛋白质糖基化过程在伯克霍尔德菌属中高度保守,并由寡糖转移酶PglL介导。虽然近年来我们对伯克霍尔德氏菌糖蛋白组的了解有所增加,关于伯克霍尔德菌物种对糖基化调节的反应知之甚少。利用CRISPR干扰(CRISPRi),我们探讨了O-连接糖基化沉默对4种伯克霍尔德菌的影响;伯克霍尔德菌K56-2,伯克霍尔德菌白花蛇MSMB375,伯克霍尔德菌多品种ATCC17616,和BurkholderiathailandensisE264.蛋白质组学和糖蛋白质组学分析显示,虽然CRISPRi能够诱导PglL沉默,这并没有消除糖基化,也不概述表型,如与糖基化无效菌株相关的蛋白质组变化或运动性改变,尽管糖基化抑制了近90%。重要的是,这项工作还表明,用高水平的鼠李糖诱导CRISPRi导致对伯克霍尔德氏菌蛋白质组的广泛影响,在没有适当控制的情况下,会掩盖CRISPRi指南特别驱动的影响。合并,这项工作表明,虽然CRISPRi允许调节O-连接的糖基化,在表型和蛋白质组水平上减少高达90%,伯克霍尔德菌似乎对糖基化能力的波动表现出强烈的耐受性。
    The process of O-linked protein glycosylation is highly conserved across the Burkholderia genus and mediated by the oligosaccharyltransferase PglL. While our understanding of Burkholderia glycoproteomes has increased in recent years, little is known about how Burkholderia species respond to modulations in glycosylation. Utilizing CRISPR interference (CRISPRi), we explored the impact of silencing of O-linked glycosylation across four species of Burkholderia; Burkholderia cenocepacia K56-2, Burkholderia diffusa MSMB375, Burkholderia multivorans ATCC17616, and Burkholderia thailandensis E264. Proteomic and glycoproteomic analyses revealed that while CRISPRi enabled inducible silencing of PglL, this did not abolish glycosylation, nor recapitulate phenotypes such as proteome changes or alterations in motility that are associated with glycosylation null strains, despite inhibition of glycosylation by nearly 90%. Importantly, this work also demonstrated that CRISPRi induction with high levels of rhamnose leads to extensive impacts on the Burkholderia proteomes, which without appropriate controls mask the impacts specifically driven by CRISPRi guides. Combined, this work revealed that while CRISPRi allows the modulation of O-linked glycosylation with reductions up to 90% at a phenotypic and proteome levels, Burkholderia appears to demonstrate a robust tolerance to fluctuations in glycosylation capacity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: English Abstract
    肠炎沙门菌已被认为是一种重要的人畜共患病原体,沙门氏菌病的预防和控制一直是一个难题。然而,糖缀合物疫苗似乎是一个有希望的解决方案。糖蛋白通常通过化学交联合成,其特征是程序复杂且成本密集。因此,迫切需要一种低成本稳定的生物合成方法。对于基于SEO-抗原的糖蛋白的生物合成,我们使用CRISPR/Cas9开发了waaL缺失的SE菌株ΔwaaL。基于银染检测脂多糖(LPS)的合成。环状聚合酶延伸克隆(CPEC)用于构建表达糖基转移酶PglL的质粒,重组铜绿假单胞菌外毒素A(rEPA),和霍乱毒素B亚基(CTB)。同时,将PilES45-K73糖基化基序添加到rEPA和CTB的N端和C端,分别。将重组质粒转化为SEΔwaaL。感应后,通过蛋白质印迹法验证糖蛋白的合成,并通过Ni-NTA柱纯化合成的糖蛋白。结果表明,waaL缺失阻断了LPS合成SE,并且rEPA和CTB蛋白在SEΔwaaL中表达。此外,当PglL表达时,rEPA和CTB发生明显的糖基化,糖基化部分为SEO抗原多糖。总之,在SE中删除waaL后,PglL可以将自身的O抗原多糖(OPS)转移到载体蛋白rEPA和CTB,产生OPS-rEPA和OPS-CTB糖蛋白。该结果为SE糖蛋白的生物合成奠定了基础。
    Salmonella enteritidis (SE) has been recognized as an important zoonotic pathogen, and the prevention and control of salmonellosis has long been a conundrum. However, glycoconjugate vaccines seem to be a promising solution. Glycoproteins are conventionally synthesized by chemical cross-linking which features complex procedure and cost-intensiveness. Therefore, a stable biosynthesis method at lower cost is in urgent need. For the biosynthesis of SE O-antigen-based glycoproteins, we used CRISPR/Cas9 to develop the waaL-deleted SE strain ∆waaL. The synthesis of lipopolysaccharide (LPS) was detected based on silver staining. Circular polymerase extension cloning (CPEC) was employed to construct the plasmids expressing glycosyltransferase PglL, recombinant Pseudomonas aeruginosa exotoxin A (rEPA), and cholera toxin B subunit (CTB). Meanwhile, PilES45-K73 glycosylation motif was added to the N-terminal and C-terminal of rEPA and CTB, respectively. The recombinant plasmids were transformed into SE ∆waaL. After induction, the synthesis of glycoprotein was verified by Western blotting and the synthesized glycoprotein was purified by Ni-NTA column. The results showed that waaL deletion blocked the LPS synthesis of SE, and that rEPA and CTB proteins were expressed in SE ∆waaL. In addition, obvious glycosylation occurred to rEPA and CTB when PglL was expressed, and the glycosylated part was SE O antigen polysaccharide. In summary, after waaL deletion in SE, PglL can transfer its own O antigen polysaccharides (OPS) to the carrier proteins rEPA and CTB, resulting in OPS-rEPA and OPS-CTB glycoproteins. The result lays a basis for the biosynthesis of SE glycoprotein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Aim: We sought to characterize the contribution of the O-OTase, PglL, to virulence in two Burkholderia spp. by comparing isogenic mutants in Burkholderia pseudomallei with the related species, Burkholderia thailandensis. Materials & methods: We utilized an array of in vitro assays in addition to Galleria mellonella and murine in vivo models to assess virulence of the mutant and wild-type strains in each Burkholderia species. Results: We found that pglL contributes to biofilm and twitching motility in both species. PglL uniquely affected morphology; cell invasion; intracellular motility; plaque formation and intergenus competition in B. pseudomallei. This mutant was attenuated in the murine model, and extended survival in a vaccine-challenge experiment. Conclusion: Our data support a broad role for pglL in bacterial fitness and virulence, particularly in B. pseudomallei.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号