Personalized immunotherapy

  • 文章类型: Journal Article
    免疫疗法是治疗诸如癌症和自身免疫的病症的快速发展的研究领域。纳米材料可以设计用于免疫系统操作,具有精确的靶向递送和改善的免疫调节功效。这里,我们详细阐述了使用纳米材料的各种策略,包括脂质体,聚合物,和无机NP,并讨论他们复杂的详细设计,机制,和应用,包括目前的监管问题。这种针对特定免疫细胞或组织并控制释放动力学的纳米材料设计可以推动当前的技术前沿,并为免疫相关疾病和疾病提供新的创新解决方案,而不会产生脱靶效应。这些材料能够与免疫细胞进行靶向相互作用,从而提高检查点抑制剂的有效性,癌症疫苗,和过继细胞疗法。此外,它们允许微调免疫反应,同时最大限度地减少副作用。在纳米技术和免疫学的交叉点,基于纳米材料的平台在彻底改变以患者为中心的免疫治疗和重塑疾病管理方面具有巨大潜力.通过优先考虑安全,自定义,并遵守监管标准,这些系统可以为精准医疗做出重大贡献,从而对医疗保健领域产生重大影响。
    Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新抗原肽作为肿瘤免疫治疗的候选疫苗具有巨大潜力。然而,由于抗原细胞摄取和交叉呈递的限制,基于新抗原肽的疫苗在临床试验中的进展明显滞后。这里,开发了一种基于束缚肽的纳米疫苗,包含由核酸佐剂-抗原缀合物驱动的自组装纳米颗粒。这种纳米疫苗通过激活抗原呈递和toll样受体信号通路刺激强烈的肿瘤特异性T细胞应答。通过显着提高抗原/佐剂共同递送至引流淋巴结的效率,纳米疫苗导致100%的肿瘤预防长达11个月,没有肿瘤复发,预示着长期抗肿瘤记忆的产生。此外,注射带有信号新抗原的纳米疫苗通过在肿瘤微环境中诱导有效的细胞毒性T淋巴细胞浸润而在40%的小鼠中消除了已建立的MC-38肿瘤(无外源OVA蛋白表达的小鼠结肠癌细胞系),而没有实质性的全身毒性。这些发现表明,基于钉合肽的纳米疫苗可能是一种容易的,一般,以及基于新抗原肽的个性化肿瘤免疫治疗激发强烈抗肿瘤免疫应答的安全性策略。
    Neoantigen peptides hold great potential as vaccine candidates for tumor immunotherapy. However, due to the limitation of antigen cellular uptake and cross-presentation, the progress with neoantigen peptide-based vaccines has obviously lagged in clinical trials. Here, a stapling peptide-based nano-vaccine is developed, comprising a self-assembly nanoparticle driven by the nucleic acid adjuvant-antigen conjugate. This nano-vaccine stimulates a strong tumor-specific T cell response by activating antigen presentation and toll-like receptor signaling pathways. By markedly improving the efficiency of antigen/adjuvant co-delivery to the draining lymph nodes, the nano-vaccine leads to 100% tumor prevention for up to 11 months and without tumor recurrence, heralding the generation of long-term anti-tumor memory. Moreover, the injection of nano-vaccine with signal neoantigen eliminates the established MC-38 tumor (a cell line of murine carcinoma of the colon without exogenous OVA protein expression) in 40% of the mice by inducing potent cytotoxic T lymphocyte infiltration in the tumor microenvironment without substantial systemic toxicity. These findings represent that stapling peptide-based nano-vaccine may serve as a facile, general, and safe strategy to stimulate a strong anti-tumor immune response for the neoantigen peptide-based personalized tumor immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:尽管在成功使用免疫治疗治疗多种实体瘤方面取得了进展,在治疗脑肿瘤方面的应用已经相当滞后。这是由于,至少在某种程度上,脑肿瘤中缺乏可介导肿瘤排斥反应的特征明确的抗原;这些肿瘤的低突变负担限制了可靶向新抗原的丰度;以及阻碍产生持续和生产性免疫反应的免疫学“冷”肿瘤微环境。在COVID-19mRNA疫苗获得普遍批准后,基于mRNA的治疗领域经历了一个福音。基于mRNA的免疫治疗剂也因其彻底改变癌症治疗的潜力而引起了广泛的兴趣。在这项研究中,我们开发了一种新颖且可扩展的方法,用于生产个性化的基于mRNA的疗法,该疗法在单一疗法中靶向多种肿瘤排斥抗原,用于治疗难治性脑肿瘤.
    方法:使用我们称为开放阅读框架抗原网络(O.R.A.N)的癌症免疫基因组学管道,鉴定胶质母细胞瘤和髓母细胞瘤肿瘤的肿瘤特异性新抗原和异常过度表达的肿瘤相关抗原。使用选择性基因捕获和富集策略为每个单独的肿瘤模型开发了个性化的肿瘤抗原特异性mRNA疫苗。在高度侵袭性的鼠GBM模型中,与抗PD-1免疫检查点阻断疗法或使用离体扩增的肿瘤抗原特异性淋巴细胞的过继细胞疗法组合评估个性化mRNA疫苗的免疫原性和功效。
    结果:我们的结果证明了抗原特异性mRNA疫苗在GBM宿主中引发强大的抗肿瘤免疫应答的有效性。我们的发现证实了以效应子功能增强为特征的肿瘤浸润淋巴细胞的增加,肿瘤内和全身,在抗原特异性mRNA定向免疫治疗后,导致肿瘤微环境从免疫冷到热的有利转变。还证明了产生靶向人GBM抗原的个性化mRNA疫苗的能力。
    结论:我们已经建立了一种个性化和可定制的mRNA治疗方法,该方法有效地靶向多种肿瘤抗原,并在临床前脑肿瘤模型中显示出有效的抗肿瘤反应。这种平台mRNA技术独特地解决了肿瘤异质性和低抗原负担的挑战,靶向经典免疫疗法抗性中枢神经系统恶性肿瘤的两个关键缺陷,可能还有其他类型的冷肿瘤.
    Despite advancements in the successful use of immunotherapy in treating a variety of solid tumors, applications in treating brain tumors have lagged considerably. This is due, at least in part, to the lack of well-characterized antigens expressed within brain tumors that can mediate tumor rejection; the low mutational burden of these tumors that limits the abundance of targetable neoantigens; and the immunologically \"cold\" tumor microenvironment that hampers the generation of sustained and productive immunologic responses. The field of mRNA-based therapeutics has experienced a boon following the universal approval of COVID-19 mRNA vaccines. mRNA-based immunotherapeutics have also garnered widespread interest for their potential to revolutionize cancer treatment. In this study, we developed a novel and scalable approach for the production of personalized mRNA-based therapeutics that target multiple tumor rejection antigens in a single therapy for the treatment of refractory brain tumors.
    Tumor-specific neoantigens and aberrantly overexpressed tumor-associated antigens were identified for glioblastoma and medulloblastoma tumors using our cancer immunogenomics pipeline called Open Reading Frame Antigen Network (O.R.A.N). Personalized tumor antigen-specific mRNA vaccine was developed for each individual tumor model using selective gene capture and enrichment strategy. The immunogenicity and efficacy of the personalized mRNA vaccines was evaluated in combination with anti-PD-1 immune checkpoint blockade therapy or adoptive cellular therapy with ex vivo expanded tumor antigen-specific lymphocytes in highly aggressive murine GBM models.
    Our results demonstrate the effectiveness of the antigen-specific mRNA vaccines in eliciting robust anti-tumor immune responses in GBM hosts. Our findings substantiate an increase in tumor-infiltrating lymphocytes characterized by enhanced effector function, both intratumorally and systemically, after antigen-specific mRNA-directed immunotherapy, resulting in a favorable shift in the tumor microenvironment from immunologically cold to hot. Capacity to generate personalized mRNA vaccines targeting human GBM antigens was also demonstrated.
    We have established a personalized and customizable mRNA-therapeutic approach that effectively targets a plurality of tumor antigens and demonstrated potent anti-tumor response in preclinical brain tumor models. This platform mRNA technology uniquely addresses the challenge of tumor heterogeneity and low antigen burden, two key deficiencies in targeting the classically immunotherapy-resistant CNS malignancies, and possibly other cold tumor types.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    现有癌症疫苗的关键挑战是协调抗原富集的供应和抗原呈递细胞(APC)内的最佳抗原呈递功能的需求。这里,使用负载有干扰素基因刺激因子(STING)激动剂(DT-Exo-STING)的树突状细胞(DC)-肿瘤杂交细胞衍生的嵌合外来体,开发了一种互补的免疫治疗策略,用于最大化肿瘤特异性T细胞免疫。这些嵌合载体配备有广谱抗原复合物,以通过直接自我呈递和间接DC-T免疫刺激途径引发强大的T细胞介导的炎症程序。这种嵌合外泌体辅助递送策略在明亮的组织归巢能力方面与现成的环状二核苷酸(CDN)递送技术相比具有优点,即使穿过棘手的血脑屏障(BBB),和用于增强的STING激活信号传导的期望的细胞溶质进入。这种纳米疫苗驱动的STING激活的改进的抗原呈递性能进一步增强了肿瘤特异性T细胞免疫应答。因此,DT-Exo-STING将免疫抑制性胶质母细胞瘤微环境逆转为促炎,杀肿瘤的状态,导致颅内原发性病变几乎消失。重要的是,利用自体肿瘤组织进行个性化DT-Exo-STING疫苗的升级选项可提高对免疫检查点阻断(ICB)治疗的敏感性,并发挥针对术后神经胶质瘤复发的全身免疫记忆.这些发现代表了胶质母细胞瘤免疫治疗的一种新兴方法,保证临床领域的进一步探索性发展。
    A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    超过100个创新的体外转录(IVT)-mRNA目前正在进行临床试验,预计在不久的将来会对医药市场产生重大影响。这背后的想法是,在成功的细胞内化IVT-mRNA后,它们随后被翻译成具有治疗或预防相关性的蛋白质。同时,癌症免疫疗法采用多种策略来动员免疫系统对抗癌症。因此,在这次审查中,IVT-mRNA在癌症免疫治疗中募集的基本原理,进行了讨论和分析。更具体地说,这篇综述的重点是mRNA疫苗的发展,新抗原的开发,以及嵌合抗原受体(CAR)T细胞,展示其临床应用和正在进行的下一代免疫治疗开发试验。此外,这项研究通过介绍我们的研究小组新的,调查了结合CAR免疫疗法和IVT-mRNA的协同潜力,专利的递送方法,利用蛋白质转导域(PTD)技术将编码感兴趣的CAR的IVT-mRNA转导到自然杀伤(NK)-92细胞中,强调了增强CARNK细胞效力的潜力,效率,和生物能学。虽然IVT-mRNA技术为癌症免疫治疗带来了令人兴奋的进展,必须承认一些挑战和局限性,比如安全,毒性,和交付问题。本文对IVT-mRNA技术的全面探索,根据其在癌症治疗中的应用,提供了对癌症免疫疗法不断发展的机遇和挑战的宝贵见解,为该领域的未来发展奠定基础。
    Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical trials, with a projected substantial impact on the pharmaceutical market in the near future. Τhe idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subsequently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer immunotherapy employs diverse strategies to mobilize the immune system in the battle against cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the development of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor (CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel, patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to transduce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA technology brings exciting progress to cancer immunotherapy, several challenges and limitations must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the stage for future advancements in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于新抗原的癌症疫苗正在成为有前途的肿瘤疗法,但免疫原性的增强可以进一步改善治疗结果。这里,我们证明在皮下施用的血清外泌体上锚定不同的肽新抗原促进淋巴结归巢和树突状细胞摄取,在体外和体内产生显著增强的抗原性。黑色素瘤肽新抗原的外泌体锚定增强了T细胞反应的体外和体内的幅度和广度,在更大程度上与CD8+T细胞反应。血清外泌体上不同肽新抗原的同时修饰在患有黑色素瘤和结肠癌的小鼠中诱导有效的肿瘤抑制和新抗原特异性免疫应答。在结肠癌小鼠中,涂有新抗原的血清外泌体疫苗与程序性细胞死亡蛋白1(PD-1)抗体的组合可实现完全的肿瘤根除和可持续的免疫记忆。重要的是,负载有肽新抗原的人血清外泌体在人结肠癌3维(3D)多细胞球体中引起显著的肿瘤生长迟缓和免疫应答。我们的研究表明,血清外泌体直接在体内定位,增加树突状细胞的摄取,并增强抗原肽的免疫原性,因此提供了用于基于肽抗原的个性化免疫疗法的通用递送工具。
    Neoantigen-based cancer vaccines are emerging as promising tumor therapies, but enhancement of immunogenicity can further improve therapeutic outcomes. Here, we demonstrate that anchoring different peptide neoantigens on subcutaneously administered serum exosomes promote lymph node homing and dendritic cell uptake, resulting in significantly enhanced antigenicity in vitro and in vivo. Exosomes anchoring of melanoma peptide neoantigens augmented the magnitude and breadth of T cell response in vitro and in vivo, to a greater extent with CD8+ T cell responses. Simultaneous decoration of different peptide neoantigens on serum exosomes induced potent tumor suppression and neoantigen-specific immune responses in mice with melanoma and colon cancer. Complete tumor eradication and sustainable immunological memory were achieved with neoantigen-painted serum exosome vaccines in combination with programmed cell death protein 1 (PD-1) antibodies in mice with colon cancer. Importantly, human serum exosomes loaded with peptide neoantigens elicited significant tumor growth retardation and immune responses in human colon cancer 3-dimensional (3D) multicellular spheroids. Our study demonstrates that serum exosomes direct in vivo localization, increase dendritic cell uptake, and enhance the immunogenicity of antigenic peptides and thus provides a general delivery tool for peptide antigen-based personalized immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    免疫细胞疗法和靶向疗法在治疗肿瘤疾病方面发展迅速。然而,当前的免疫细胞疗法和靶向免疫疗法经常面临三个挑战(三个Ss):安全性挑战,如细胞因子释放综合征(C.R.S.);特异性靶向问题,如由脱靶肿瘤细胞引起的低疗效;不令人满意的支付给临床患者和医生带来混淆。我们已经研究了三十多年的免疫疗法,最近,已经提出了治疗肿瘤疾病的个性化免疫疗法。在我们发现肿瘤微环境中免疫细胞的静止基因后,我们建立了单细胞基因组学分析,研究来自多种肿瘤抗原(新抗原)的异质性免疫反应;这里,我们通过使用机器学习模型评估最佳免疫治疗,进一步引入了新一代免疫治疗模块.结合单细胞基因组分析的机器学习模型可以预测最佳的免疫细胞(例如T细胞)和其他最佳的靶向药物,例如PD1和CTLA4抑制剂,供患者使用。
    Immune-cell therapy and targeting therapy are in rapid development to treat tumor diseases. However, current immune-cell therapy and targeting immunotherapy often face three challenges (three Ss): safety challenges such as cytokine releasing syndrome (C.R.S.); specificity targeting problems such as low efficacy caused by off-targeting tumor cells; unsatisfying payment are confounded to clinical patients and physicians. We have been studying immunotherapy for more than thirty years, and recently, personalized immunotherapy to treat tumor disease has been proposed. After we discovered quiescent genes from immune cells within the tumor microenvironment, we set up single-cell genomics analysis, studying heterogeneous immune responses from multiple tumor antigens (neo-antigen); here, we further introduce a new generation of immunotherapy module by using a machine-learning model to assess optimal immunotherapy. The machine-learning model combined with single-cell genomic analysis can predict optimal immune-cell (such as T-cells) and other optimal targeting drugs such as PD1 and CTLA4 inhibitors for the patient to use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    免疫疗法,包括免疫细胞治疗和靶向治疗,是通过不断发现的分子化合物或免疫细胞逐渐发展起来的。选择目标化合物和免疫细胞疗法的最佳组合或最佳组合是临床科学家和临床医生面临的挑战。我们发现肿瘤浸润淋巴细胞(TIL)治疗后的疗效各不相同,现在已经在一组异质性免疫细胞中发现了TIL。为每位患者选择最佳的免疫疗法,我们开始研究TIL基因组学,包括2007年发表的TIL的单细胞mRNA差异显示和2013年发表的TIL的单细胞RNA-seq,2015年建立了TIL定量网络,2022年研究了用于免疫治疗的机器学习模型。这些手册报告了单细胞RNA-seq数据与机器学习相结合,以评估个体患者的最佳化合物和免疫细胞。机器学习模型,人工智能之一,可以估计来自单细胞RNA-seq的靶向基因组差异,以便它们可以涵盖13种免疫细胞疗法和正在进行的FDA批准的靶向疗法,如PD1抑制剂,PDL1抑制剂,和CTLA4抑制剂,以及其他不同的治疗方法,如HDACI或DNMT1抑制剂,FDA批准的药物。此外,还包括临床试验的1期,2期,3期和4期,比如TIL,CAR-T细胞,TCRT细胞。具有人工智能估计系统的单细胞RNA-seq比我们发布的微阵列模型或仅仅是细胞疗法的模型要好得多。医学目标是解决临床免疫治疗中的三个问题:提高疗效;减少不良反应和降低临床应用成本。
    Immunotherapy, including immune cell therapy and targeted therapy, is gradually developed through the ongoing discovery of molecular compounds or immune cells. Choosing the best one or the best combination of target compounds and immune-cell therapy is a challenge for clinical scientists and clinicians. We have found variable efficacy individually after tumor-infiltrating lymphocyte (TIL) therapy, and now TILs have been discovered in a group of heterogeneous immune cells. To select the best immunotherapy for each patient, we started to study TIL genomics, including single-cell mRNA differential display from TIL published in 2007 and single-cell RNA-seq from TIL published in 2013, set up TIL quantitative network in 2015, researched machine-learning model for immune therapy in 2022. These manual reports single-cell RNA-seq data combined with machine learning to evaluate the optimal compounds and immune cells for individual patients. The machine-learning model, one of artificial intelligence, can estimate targeting genomic variance from single-cell RNA-seq so that they can cover thirteen kinds of immune cell therapies and ongoing FDA-approved targeted therapies such as PD1 inhibitors, PDL1 inhibitors, and CTLA4 inhibitors, as well as other different treatments such as HDACI or DNMT1 inhibitors, FDA-approved drugs. Moreover, also cover Phase-1, Phase-2, Phase-3, and Phase-4 of clinical trials, such as TIL, CAR T-cells, TCR T-cells. Single-cell RNA-seq with an Artificial intelligence estimation system is much better than our published models from microarrays or just cell therapy. The medical goal is to address three issues in clinical immunotherapy: the increase of efficacy; the decrease of adverse effects and the decrease of the cost in clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新抗原正在成为开发个性化癌症疫苗的有吸引力的目标,但是,由于它们对开始免疫反应的淋巴组织的可及性受到限制,因此严重阻碍了它们的免疫效力。利用红细胞(RBC)捕获并将外周血中的病原体呈递到脾脏中的抗原呈递细胞(APC)的能力,我们开发了一种RBC驱动的脾靶向策略,以提供编码肝细胞癌(HCC)新抗原的DNA疫苗。在预先分离的红细胞上故意搭便车的DNA疫苗封装聚合物纳米颗粒可以优先在脾脏中积累,以促进APC的新抗原表达,导致新抗原特异性T细胞免疫的爆发,以个性化的方式预防肿瘤发生,并减缓已建立的积极生长的HCC中的肿瘤生长。值得注意的是,当与抗PD-1联合使用时,疫苗实现了完全的肿瘤消退,并产生了具有长期肿瘤特异性免疫记忆的强大的全身免疫反应,彻底预防了肿瘤复发和自发性肺转移。这项研究提供了开发个性化新抗原疫苗的前瞻性策略,以提高免疫“冷”HCC的癌症免疫治疗效率。
    Neoantigens are emerging as attractive targets to develop personalized cancer vaccines, but their immunization efficacy is severely hampered by their restricted accessibility to lymphoid tissues where immune responses are initiated. Leveraging the capability of red blood cells (RBCs) to capture and present pathogens in peripheral blood to the antigen-presenting cells (APCs) in spleen, we developed a RBC-driven spleen targeting strategy to deliver DNA vaccine encoding hepatocellular carcinoma (HCC) neoantigen. The DNA vaccine-encapsulating polymeric nanoparticles that were intentionally hitchhiked on the preisolated RBCs could preferentially accumulate in the spleen to promote the neoantigen expression by APCs, resulting in the burst of neoantigen-specific T-cell immunity to prevent tumorigenesis in a personalized manner, and slow down tumor growth in the established aggressively growing HCC. Remarkably, when combined with anti-PD-1, the vaccine achieved complete tumor regression and generated a robust systemic immune response with long-term tumor-specific immunological memory, which thoroughly prevented tumor recurrence and spontaneous lung metastasis. This study offers a prospective strategy to develop personalized neoantigen vaccines for augmenting cancer immunotherapy efficiency in immune \"cold\" HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于癌症疫苗的术后免疫疗法在手术切除后的患者中正在成为一种有希望的方法,以抑制肿瘤复发。然而,低免疫原性和不足的癌症抗原限制了术后癌症疫苗的广泛应用。这里,我们提出了“垃圾至宝”癌症疫苗策略,以增强术后个性化免疫疗法,其中纯化的手术脱落的自体肿瘤(具有完整的抗原库)的抗原性和佐剂性得到了共同增强。在抗原性和佐剂性共同增强的个性化疫苗(Angel-Vax)中,聚核糖胞嘧啶:聚核糖胞嘧啶酸(pIC)和已经经历免疫原性死亡的肿瘤细胞被包封在通过甘露聚糖和聚乙烯亚胺的交联形成的自佐剂化水凝胶中。与其在体外的单个组分相比,Angel-Vax在抗原呈递细胞刺激和成熟方面表现出增强的能力。用Angel-Vax免疫引发有效的全身性细胞毒性T细胞免疫反应,有助于在小鼠中获得令人满意的预防和治疗功效。此外,当与免疫检查点抑制剂(ICI)联合使用时,Angel-Vax有效预防肿瘤术后复发,与单独使用ICI相比,中位生存期增加了约35%。与术后癌症疫苗制备过程繁琐不同,本文的简单可行的方法可以代表各种基于肿瘤细胞的抗原通过增强的免疫原性抑制手术后肿瘤复发的一般策略。
    Cancer vaccine-based postsurgical immunotherapy is emerging as a promising approach in patients following surgical resection for inhibition of tumor recurrence. However, low immunogenicity and insufficient cancer antigens limit the widespread application of postoperative cancer vaccines. Here, we propose a \"trash to treasure\" cancer vaccine strategy to enhance postsurgical personalized immunotherapy, in which antigenicity and adjuvanticity of purified surgically exfoliated autologous tumors (with whole antigen repertoire) were co-reinforced. In the antigenicity and adjuvanticity co-reinforced personalized vaccine (Angel-Vax), polyriboinosinic: polyribocytidylic acid (pIC) and tumor cells that have undergone immunogenic death are encapsulated in a self-adjuvanted hydrogel formed by cross-linking of mannan and polyethyleneimine. Angel-Vax exhibits an enhanced capacity on antigen-presenting cells stimulation and maturation compared to its individual components in vitro. Immunization with Angel-Vax provokes an efficient systemic cytotoxic T-cell immune response, contributing to the satisfied prophylactic and therapeutic efficacy in mice. Furthermore, when combined with immune checkpoint inhibitors (ICI), Angel-Vax effectively prevented postsurgical tumor recurrence, as evidenced by an increase in median survival of approximately 35% compared with ICI alone. Unlike the cumbersome preparation process of postoperative cancer vaccines, the simple and feasible approach herein may represent a general strategy for various kinds of tumor cell-based antigens in the inhibition of postsurgical tumor relapse by reinforced immunogenicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号