Peroxiredoxin III

过氧化物酶 III
  • 文章类型: Journal Article
    DNA复制过程中的核小体组装依赖于组蛋白伴侣。最近的研究表明,失调的组蛋白伴侣有助于癌症进展,包括胃癌(GC)。需要进一步的研究来探索组蛋白伴侣的预后和治疗意义及其在GC进展中的作用机制。在这里,我们确定组蛋白伴侣ASF1B作为GC增殖和预后的潜在生物标志物。ASF1B在GC中显著上调,这与不良预后有关。体外和体内实验表明,抑制ASF1B抑制GC的恶性特征,而过表达ASF1B则有相反的作用。机械上,转录因子FOXM1直接与ASF1B启动子区结合,从而调节其转录。用硫链菌素治疗,FOXM1抑制剂,不仅抑制了ASF1B的表达,但也抑制GC进展。此外,ASF1B以FOXM1依赖性方式调节线粒体蛋白过氧化物氧还蛋白3(PRDX3)转录。还阐明了ASF1B调节的PRDX3在GC细胞增殖和氧化应激平衡中的关键作用。总之,我们的研究提示FOXM1-ASF1B-PRDX3轴是治疗GC的潜在治疗靶点.
    Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硫氧还蛋白还原酶2(Txnrd2)属于硒蛋白的硫氧还蛋白还原酶家族,是哺乳动物细胞中调节氧化还原稳态的关键抗氧化酶。这里,我们报道,Txnrd2通过抑制内质网(ER)应激氧化应激并通过Trx2/Prx3途径对脑出血(ICH)引起的脑损伤产生重要影响.此外,我们证明,药理硒(Se)通过增强Txnrd2表达来挽救ICH后的脑损伤。首先,在胶原酶IV诱导的ICH模型中确定Txnrd2,Trx2和Prx3的表达和定位。然后在发现发展更严重的脑水肿和神经缺陷的大鼠中使用siRNA干扰击倒Txnrd2。机械上,我们观察到Txnrd2的缺失导致神经元和星形胶质细胞的脂质过氧化水平和ER应激蛋白表达增加。此外,结果表明,硒在侧脑室给药亚硒酸钠时,通过促进Trx2/Prx3kilter,有效恢复了脑中Txnrd2的表达,并抑制了ER应激蛋白活性和活性氧(ROS)的产生。这项研究揭示了Txnrd2通过Trx2/Prx3途径调节ICH氧化应激和ER应激的作用及其作为ICH治疗靶标的潜力。
    Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    急性肺损伤(ALI)是脓毒症危及生命的并发症之一。巨噬细胞极化在脓毒症相关ALI中起着至关重要的作用。然而,ALI和炎症发展中巨噬细胞极化的调节机制尚不清楚.在这项研究中,我们证明,巨噬细胞极化发生在脓毒症相关的ALI中,并伴有线粒体功能障碍和炎症,PRDX3的减少促进巨噬细胞极化和线粒体功能障碍的启动。机械上,PRDX3过表达促进M1巨噬细胞向M2巨噬细胞分化,并通过降低糖酵解水平和增加TCA循环活性来增强损伤后线粒体功能恢复。总之,我们确定PRDX3是整合氧化应激的关键枢纽,炎症,和巨噬细胞极化中的代谢重编程。这些发现说明了巨噬细胞极化和脓毒症相关ALI之间联系的适应性机制。
    Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:心肌缺血/再灌注损伤(MIRI)严重威胁着人们的健康。心肌细胞线粒体功能障碍可促进MIRI的进展。右美托咪定(Dex)可减轻心肌损伤,已知可以逆转肺损伤中的线粒体功能障碍。然而,Dex在MIRI期间线粒体功能障碍中的功能尚不清楚.
    目的:评估Dex在MIRI期间线粒体功能障碍中的功能。
    方法:为了研究Dex在MIRI中的功能,将H9C2细胞置于缺氧/复氧(H/R)条件下。进行CCK8测定以测试细胞活力,并通过JC-1染色评估线粒体膜电位。此外,通过Co-IP分析探索Sirt3和Prdx3之间的结合关系。此外,蛋白质表达采用蛋白质印迹法检测。
    结果:Dex可以消除H/R诱导的H9C2细胞线粒体功能障碍。此外,H/R处理显著抑制了Sirt3的表达,而Dex部分恢复了这一现象。敲除Sirt3或Prdx3可明显降低Dex对H/R诱导的线粒体损伤的保护作用。同时,Sirt3可通过Prdx3的脱乙酰作用增强Prdx3的功能。
    结论:发现Dex通过激活Sirt3/Prdx3通路减轻H/R诱导的心肌细胞线粒体功能障碍。因此,这项研究可能为探索MIRI治疗的新策略提供新的思路.
    BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) seriously threatens the health of people. The mitochondrial dysfunction in cardiomyocytes can promote the progression of MIRI. Dexmedetomidine (Dex) could alleviate the myocardial injury, which was known to reverse mitochondrial dysfunction in lung injury. However, the function of Dex in mitochondrial dysfunction during MIRI remains unclear.
    OBJECTIVE: To assess the function of Dex in mitochondrial dysfunction during MIRI.
    METHODS: To investigate the function of Dex in MIRI, H9C2 cells were placed in condition of hypoxia/reoxygenation (H/R). CCK8 assay was performed to test the cell viability, and the mitochondrial membrane potential was evaluated by JC-1 staining. In addition, the binding relationship between Sirt3 and Prdx3 was explored by Co-IP assay. Furthermore, the protein expressions were examined using western blot.
    RESULTS: Dex could abolish H/R-induced mitochondrial dysfunction in H9C2 cells. In addition, H/R treatment significantly inhibited the expression of Sirt3, while Dex partially restored this phenomenon. Knockdown of Sirt3 or Prdx3 obviously reduced the protective effect of Dex on H/R-induced mitochondrial injury. Meanwhile, Sirt3 could enhance the function of Prdx3 via deacetylation of Prdx3.
    CONCLUSIONS: Dex was found to attenuate H/R-induced mitochondrial dysfunction in cardiomyocytes via activation of Sirt3/Prdx3 pathway. Thus, this study might shed new lights on exploring new strategies for the treatment of MIRI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非甾体抗炎药(NSAID)的使用与不良后果有关,包括肝损伤。双氯芬酸的有害肝毒性,一种广泛使用的非甾体抗炎药,主要与线粒体的氧化损伤有关,是活性氧(ROS)的主要来源。负责诱导双氯芬酸相关肝细胞毒性的主要ROS和减轻这些ROS的主要抗氧化剂仍然未知。过氧化物酶III(PrxIII)是哺乳动物细胞线粒体中最丰富和最有效的H2O2消除酶。这里,我们研究了线粒体H2O2和PrxIII在双氯芬酸诱导的肝细胞线粒体功能障碍和凋亡中的作用。使用荧光H2O2指示剂将线粒体H2O2水平与其他类型的ROS区分开。在双氯芬酸治疗后,与表达PrxIII的对照相比,PrxIII敲低的HepG2人肝癌细胞显示出更高水平的线粒体H2O2。通过较低的耗氧率测量,PrxIII耗竭细胞表现出更高的线粒体功能障碍,线粒体膜电位的丧失,心磷脂氧化,和半胱天冬酶激活,对细胞凋亡更敏感。线粒体靶向过氧化氢酶在PrxIII敲低的HepG2细胞或源自PrxIII敲除小鼠的原代肝细胞中的异位表达抑制了双氯芬酸诱导的线粒体H2O2积累并减少了细胞凋亡。因此,我们证明线粒体H2O2是双氯芬酸诱导的由线粒体功能障碍和细胞凋亡驱动的肝细胞损伤的关键介质。我们表明,PrxIII损失导致线粒体H2O2的临界积累,并增加了双氯芬酸的有害作用。PrxIII或其他靶向线粒体H2O2的抗氧化剂可以作为潜在的治疗剂来探索,以防止与NSAID使用相关的肝毒性。
    Nonsteroidal anti-inflammatory drug (NSAID) use is associated with adverse consequences, including hepatic injury. The detrimental hepatotoxicity of diclofenac, a widely used NSAID, is primarily connected to oxidative damage in mitochondria, which are the primary source of reactive oxygen species (ROS). The primary ROS responsible for inducing diclofenac-related hepatocellular toxicity and the principal antioxidant that mitigates these ROS remain unknown. Peroxiredoxin III (PrxIII) is the most abundant and potent H2O2-eliminating enzyme in the mitochondria of mammalian cells. Here, we investigated the role of mitochondrial H2O2 and the protective function of PrxIII in diclofenac-induced mitochondrial dysfunction and apoptosis in hepatocytes. Mitochondrial H2O2 levels were differentiated from other types of ROS using a fluorescent H2O2 indicator. Upon diclofenac treatment, PrxIII-knockdown HepG2 human hepatoma cells showed higher levels of mitochondrial H2O2 than PrxIII-expressing controls. PrxIII-depleted cells exhibited higher mitochondrial dysfunction as measured by a lower oxygen consumption rate, loss of mitochondrial membrane potential, cardiolipin oxidation, and caspase activation, and were more sensitive to apoptosis. Ectopic expression of mitochondrially targeted catalase in PrxIII-knockdown HepG2 cells or in primary hepatocytes derived from PrxIII-knockout mice suppressed the diclofenac-induced accumulation of mitochondrial H2O2 and decreased apoptosis. Thus, we demonstrated that mitochondrial H2O2 is a key mediator of diclofenac-induced hepatocellular damage driven by mitochondrial dysfunction and apoptosis. We showed that PrxIII loss results in the critical accumulation of mitochondrial H2O2 and increases the harmful effects of diclofenac. PrxIII or other antioxidants targeting mitochondrial H2O2 could be explored as potential therapeutic agents to protect against the hepatotoxicity associated with NSAID use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    奥希替尼耐药被认为是限制接受表皮生长因子受体(EGFR)突变的非小细胞肺癌(NSCLC)治疗的患者生存益处的主要障碍。然而,获得性耐药的潜在机制尚不清楚.在这项研究中,我们报道,雌激素受体β(ERβ)在奥希替尼耐药的NSCLC中高表达,并在促进奥希替尼耐药中发挥关键作用.我们进一步确定泛素特异性蛋白酶7(USP7)是去泛素化和上调NSCLC中ERβ的关键结合伴侣。ERβ通过减轻活性氧(ROS)积累促进奥希替尼耐药。我们发现ERβ在机制上抑制了过氧化物酶3(PRDX3)去氧化,从而赋予NSCLC奥希替尼耐药性。此外,我们提供的证据表明,ERβ的耗竭在体外和体内均能诱导NSCLC中的ROS积累并逆转奥希替尼耐药.因此,我们的结果表明,USP7介导的ERβ稳定抑制PRDX3SUMO化,以减轻ROS积累并促进奥希替尼耐药,提示靶向ERβ可能是克服NSCLC奥希替尼耐药的有效治疗策略.
    Osimertinib resistance is regarded as a major obstacle limiting survival benefits for patients undergoing treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). However, the underlying mechanisms of acquired resistance remain unclear. In this study, we report that estrogen receptor β (ERβ) is highly expressed in osimertinib-resistant NSCLC and plays a pivotal role in promoting osimertinib resistance. We further identified ubiquitin-specific protease 7 (USP7) as a critical binding partner that deubiquitinates and upregulates ERβ in NSCLC. ERβ promotes osimertinib resistance by mitigating reactive oxygen species (ROS) accumulation. We found that ERβ mechanistically suppresses peroxiredoxin 3 (PRDX3) SUMOylation and thus confers osimertinib resistance onto NSCLC. Furthermore, we provide evidence showing that depletion of ERβ induces ROS accumulation and reverses osimertinib resistance in NSCLC both in vitro and in vivo. Thus, our results demonstrate that USP7-mediated ERβ stabilization suppresses PRDX3 SUMOylation to mitigate ROS accumulation and promote osimertinib resistance, suggesting that targeting ERβ may be an effective therapeutic strategy to overcome osimertinib resistance in NSCLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ferroptosis,由磷脂过氧化物积累驱动的调节细胞死亡途径,由于缺乏特定的标记,在生理条件下进行鉴定一直具有挑战性。这里,我们在体外和体内都确定了高氧化过氧化物氧还蛋白3(PRDX3)作为铁凋亡的标志物。在铁死亡期间,线粒体脂质过氧化物引发PRDX3过度氧化,将Cys硫醇转化为亚磺酸或磺酸的翻译后修饰。一旦过度氧化,PRDX3从线粒体转移到质膜,抑制胱氨酸的摄取,从而导致铁中毒。应用高氧化PRDX3作为标记,我们确定,在酒精性和非酒精性脂肪性肝病小鼠模型中,铁死亡是肝细胞死亡的原因,最常见的慢性肝脏疾病。我们的研究强调了铁性凋亡在病理生理条件下的重要性,并开辟了用抑制铁性凋亡的药物治疗这些肝脏疾病的可能性。
    Ferroptosis, a regulated cell death pathway driven by accumulation of phospholipid peroxides, has been challenging to identify in physiological conditions owing to the lack of a specific marker. Here, we identify hyperoxidized peroxiredoxin 3 (PRDX3) as a marker for ferroptosis both in vitro and in vivo. During ferroptosis, mitochondrial lipid peroxides trigger PRDX3 hyperoxidation, a posttranslational modification that converts a Cys thiol to sulfinic or sulfonic acid. Once hyperoxidized, PRDX3 translocates from mitochondria to plasma membranes, where it inhibits cystine uptake, thereby causing ferroptosis. Applying hyperoxidized PRDX3 as a marker, we determined that ferroptosis is responsible for death of hepatocytes in mouse models of both alcoholic and nonalcoholic fatty liver diseases, the most prevalent chronic liver disorders. Our study highlights the importance of ferroptosis in pathophysiological conditions and opens the possibility to treat these liver diseases with drugs that inhibit ferroptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:甲醛(FA)与白血病的发生有关,氧化应激被认为是一个主要原因。作为氧化应激的内源性生物标志物,很少有研究关注过氧化物氧化还原蛋白III(PrxIII)与FA毒性之间的关系。我们前期的研讨不雅察到PrxIII的高表达在FA引诱的骨髓细胞(BMCs)凋亡进程中,然而,确切的机制尚不清楚。因此,本文旨在探讨FA毒性与PrxIII基因的可能关联。
    方法:我们首先,使用细胞计数试剂盒-8(CCK-8)检测BMC暴露于不同剂量的FA(50、100、200μmol/L)不同暴露时间(12、24、48h)后的活力,然后选择24小时作为暴露时间,通过定量逆转录PCR(qRT-PCR)和Westernblot分析检测暴露不同剂量FA的PrxIII的表达。根据我们的初步实验结果,我们选择100μmol/LFA作为暴露剂量,暴露24小时,并使用小干扰RNA(siRNA)沉默PrxIII,通过CCK-8检查细胞活力,通过DCFH-DA检查活性氧(ROS)水平,通过膜联蛋白V/PI双重染色和流式细胞术(FCM)检测细胞周期,以探讨PrxIII沉默对FA诱导的骨髓毒性的可能调节作用。
    结果:PrxIII的高表达发生在FA诱导的氧化应激过程中。沉默PrxIII可防止FA诱导氧化应激,从而增加细胞活力,降低ROS水平,拯救G0-G1和G2-M逮捕,减少细胞凋亡。
    结论:PrxIII沉默可能是减轻FA诱导的氧化损伤的潜在目标。
    BACKGROUND: Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene.
    METHODS: We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity.
    RESULTS: High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis.
    CONCLUSIONS: PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号