Periplasmic Proteins

周质蛋白质类
  • 文章类型: Journal Article
    细菌鞭毛,这有利于运动,由〜20种结构蛋白组成,这些结构蛋白被组织成长的细胞外细丝,通过周质棒连接到细胞质转子-定子复合物。鞭毛组装受到多个检查点的调节,这些检查点确保有序的基因表达模式与各种结构单元的组装耦合。这里,我们使用落射荧光,超分辨率,和透射电子显微镜显示,缺乏周质蛋白(FlhE)会阻止正常的鞭毛形态发生,并导致沙门氏菌中周质鞭毛的形成。周质鞭毛破坏细胞壁合成,导致细胞裂解的正常细胞形态的丧失。我们建议FlhE充当周质伴侣以控制周质棒的组装,从而防止周质鞭毛的形成。
    The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多个α-变形杆菌中的生物膜形成和表面附着是由单极多糖(UPP)粘附素驱动的。病原体根癌农杆菌产生UPP粘附素,其由细胞内第二信使环单磷酸二鸟苷酸(c-di-GMP)调节。之前的研究表明DcpA,二鸟苷酸环化酶-磷酸二酯酶,在控制UPP生产和表面附着方面至关重要。DcpA受PruR调控,一种与已知与钼蝶呤辅因子(MoCo)协调的酶域具有遥远相似性的蛋白质。蝶呤是双环富氮化合物,其中一些是通过叶酸生物合成途径的非必需分支产生的,与MoCo不同。蝶呤结合蛋白PruR控制DcpA活性,促进c-di-GMP分解并抑制其合成。蝶呤被排泄,我们在这里报告PruR与周质中的这些代谢物相关,促进与DcpA周质结构域的相互作用。蝶啶还原酶PruA,将特定的二氢蝶呤分子还原为其四氢形式,通过PruR赋予对DcpA活性的控制。相对于其他相关的蝶呤,四氢蝶呤优先与PruR缔合,在pruA突变体中PruR-DcpA相互作用降低。PruR和DcpA在操纵子中编码,在包括哺乳动物病原体在内的各种变形杆菌中具有广泛的保守性。晶体结构显示PruR和几个直系同源物采用保守折叠,具有与双环蝶呤环协调的蝶呤特异性结合间隙。这些发现定义了蝶呤响应性调节机制,该机制控制根癌农杆菌中生物膜的形成和相关的c-di-GMP依赖性表型,并可能在多种蛋白细菌谱系中更广泛地发挥作用。
    Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肽聚糖是细菌细胞壁的主要成分。其作为聚合物大厦的完整性对细菌生存至关重要,因此,它是抗生素的突出目标。肽聚糖是动态交联聚合物,其经历恒定的生物合成和周转。铜绿假单胞菌的可溶性裂解转糖基酶(Slt)是参与这种动态周转的周质酶。在活细菌中使用琥珀密码子抑制方法,我们将荧光发色团掺入Slt的结构中。荧光显微镜显示,Slt填充了周质空间的长度,并集中在子细胞中的分隔位点。该浓度在细胞分离后持续存在。琥珀密码子抑制方法也用于掺入光亲和氨基酸以捕获伴侣蛋白。基于质谱的蛋白质组学在体内鉴定了Slt的12个伴侣。这些蛋白质组学实验用体外下拉分析补充。确定了另外20个合作伙伴。我们克隆了基因并纯化至同质性22个鉴定的伴侣。生物物理表征证实所有都是真正的Slt粘合剂。Slt的蛋白质伴侣的身份跨越不同的周质蛋白质家族,包括已知存在于分裂体中的几种蛋白质。值得注意的周质伴侣(KD<0.5μM)包括PBPs(PBP1a,KD=0.07μM;PBP5=0.4μM);其他裂解转糖基转移酶(SltB2,KD=0.09μM;RlpA,KD=0.4μM);VI型分泌系统效应子(Tse5,KD=0.3μM);和用于藻酸盐生物合成的调节蛋白酶(AlgO,KD<0.4μM)。鉴于其相互作用的功能广度,Slt被概念化为周质内的中心蛋白。
    Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 μM) include PBPs (PBP1a, KD = 0.07 μM; PBP5 = 0.4 μM); other lytic transglycosylases (SltB2, KD = 0.09 μM; RlpA, KD = 0.4 μM); a type VI secretion system effector (Tse5, KD = 0.3 μM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 μM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性菌的生存和毒力需要适当的生物发生和外膜(OM)的维持,其密集地填充有β-桶OM蛋白(OMPs)。在到达OM之前,前体展开OMP(uOMP)必须穿过整个细胞包膜。周质伴侣和蛋白酶的网络在水性周质中保持这些膜蛋白的未折叠但有折叠能力的构象,同时防止了通路外的聚集。这些周质蛋白利用不同的策略,包括构象异质性,低聚,多价,和动力学分配,履行和规范他们的职能。各个周质参与者的冗余和独特特征协同作用,创建了一个能够应对不断变化的环境压力的蛋白质质量控制团队。
    The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大肠杆菌通常用作生产重组蛋白的工厂。在许多情况下,重组蛋白需要二硫键才能正确折叠和发挥功能。这些蛋白质在遗传上与信号肽融合,使得它们被分泌到周质的氧化环境(其中存在二硫键形成所需的酶)。目前,很难在体内确定重组蛋白是否有效地从细胞质中分泌并在周质中折叠,或者在这些步骤之一中是否存在瓶颈,因为已经超过了细胞容量。为了解决这个问题,我们开发了一种生物传感器,可以检测由(1)细胞质中蛋白质分泌效率低下和(2)周质中蛋白质聚集引起的细胞应激。我们证明了如何使用从生物传感器获得的荧光指纹来鉴定不超过细胞容量的诱导条件,因此不会引起细胞应激。这些诱导条件导致更有效的生物质,并且在一些情况下导致更高滴度的可溶性重组蛋白。
    Escherichia coli is often used as a factory to produce recombinant proteins. In many cases, the recombinant protein needs disulfide bonds to fold and function correctly. These proteins are genetically fused to a signal peptide so that they are secreted to the oxidizing environment of the periplasm (where the enzymes required for disulfide bond formation exist). Currently, it is difficult to determine in vivo whether a recombinant protein is efficiently secreted from the cytoplasm and folded in the periplasm or if there is a bottleneck in one of these steps because cellular capacity has been exceeded. To address this problem, we have developed a biosensor that detects cellular stress caused by (1) inefficient secretion of proteins from the cytoplasm and (2) aggregation of proteins in the periplasm. We demonstrate how the fluorescence fingerprint obtained from the biosensor can be used to identify induction conditions that do not exceed the capacity of the cell and therefore do not cause cellular stress. These induction conditions result in more effective biomass and in some cases higher titers of soluble recombinant proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌鞭毛是由超过25种不同的蛋白质形成的复杂结构,这个附肢包括三个保守的结构:基体,钩子和细丝。基体,嵌入细胞信封中,是最复杂的结构,并容纳出口设备和电机。在不同物种中鞭毛马达的原位图像揭示了围绕基底的保守周质成分的结构的巨大多样性。在许多情况下,形成这些新结构的蛋白质的身份已经在遗传和生物化学上得到了阐明,但在其他方面,它们仍有待识别或表征。在这项工作中,我们报告说,在α蛋白细菌中,新型蛋白质MotK和MotE对于鞭毛旋转至关重要。我们显示了这些周质蛋白彼此相互作用以及与MotB2相互作用的证据。此外,这些蛋白质定位于鞭毛的极点,而MotK的定位取决于MotB2和MotA2。这些结果共同表明,MotK和MotE的作用是激活或招募鞭毛定子到鞭毛结构。
    The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DegP蛋白酶-伴侣在革兰氏阴性细菌的周质中运作,它有助于调节蛋白质的稳态,促进毒力,对于在压力下生存至关重要。为了完成这些任务,DegP形成预组织的载脂蛋白低聚物的网络,其促进在笼状复合物的分布内捕获底物,所述笼状复合物扩展以封装各种尺寸的客户。虽然DegP笼形复合物的结构是众所周知的,对结构知之甚少,动力学,DegP笼内客户端蛋白的相互作用以及客户端结构动力学与功能之间的关系。这里,我们通过结合流体动力学测量,使用模型α-螺旋客户蛋白在整个DegP激活周期中探测600kDaDegP笼复合物中的宿主-客体相互作用。基于甲基-横向弛豫优化光谱的溶液核磁共振研究,和蛋白水解活性测定。我们发现在客户面前,DegP笼与少数中间体合作组装。我们的数据进一步表明,绑定客户端的N端一半,伸入笼子的内部,主要是展开和灵活的,以及在宽范围的时间范围内多个构象状态之间的交换。最后,我们表明,DegP的蛋白酶结构域的协同结构转变发生在客户参与时,导致激活。一起,我们的发现支持DegP模型作为一个高度合作和动态的分子机器,稳定客户的展开状态,主要通过与C末端的相互作用,产生有效的卵裂。
    The DegP protease-chaperone operates within the periplasm of Gram-negative bacteria, where it assists in the regulation of protein homeostasis, promotes virulence, and is essential to survival under stress. To carry out these tasks, DegP forms a network of preorganized apo oligomers that facilitate the capture of substrates within distributions of cage-like complexes which expand to encapsulate clients of various sizes. Although the architectures of DegP cage complexes are well understood, little is known about the structures, dynamics, and interactions of client proteins within DegP cages and the relationship between client structural dynamics and function. Here, we probe host-guest interactions within a 600 kDa DegP cage complex throughout the DegP activation cycle using a model α-helical client protein through a combination of hydrodynamics measurements, methyl-transverse relaxation optimized spectroscopy-based solution nuclear magnetic resonance studies, and proteolytic activity assays. We find that in the presence of the client, DegP cages assemble cooperatively with few intermediates. Our data further show that the N-terminal half of the bound client, which projects into the interior of the cages, is predominantly unfolded and flexible, and exchanges between multiple conformational states over a wide range of time scales. Finally, we show that a concerted structural transition of the protease domains of DegP occurs upon client engagement, leading to activation. Together, our findings support a model of DegP as a highly cooperative and dynamic molecular machine that stabilizes unfolded states of clients, primarily via interactions with their C-termini, giving rise to efficient cleavage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一种结合AlphaFold2(AF2)和交联质谱(XL-MS)的管道,以模拟具有多种构象的蛋白质的结构。该流水线包括两个主要步骤:使用AF2的集成生成和使用XL-MS数据的构象选择。对于构象选择,我们开发了两个分数——单链接概率分数(MP)和交联概率分数(XLP),这两者都是基于蛋白质表面的残基深度。我们在诱饵蛋白结构的大型数据集上对MP和XLP进行了基准测试,并显示我们的分数优于以前开发的分数。然后,我们在蛋白质数据库中具有开放和封闭构象的三种蛋白质上测试了我们的方法:补体成分3(C3),荧光素酶,和谷氨酰胺结合周质蛋白(QBP),首先使用AF2生成集合,然后使用实验XL-MS数据筛选开放和封闭构象。在六个案例中的五个,AF2合奏中最准确的模型-或该模型1µ内的构象-使用交联识别,通过XLP评分评估。在剩下的情况下,只有单墨水(通过MP评分评估)成功鉴定了QBP的开放构象,通过包括单体的“占用率”,这些结果得到了进一步改善。这作为单墨水有效性的令人信服的概念证明。相比之下,AF2评估评分(pTM)仅能够在6例中的2例中确定最准确的构象.我们的结果强调了AF2与XL-MS等实验方法的互补性,MP和XLP评分提供了可靠的指标来评估预测模型的质量。上述MP和XLP评分函数可在https://gitlab.com/topf-lab/xlms-tools上获得。
    We propose a pipeline that combines AlphaFold2 (AF2) and crosslinking mass spectrometry (XL-MS) to model the structure of proteins with multiple conformations. The pipeline consists of two main steps: ensemble generation using AF2 and conformer selection using XL-MS data. For conformer selection, we developed two scores-the monolink probability score (MP) and the crosslink probability score (XLP)-both of which are based on residue depth from the protein surface. We benchmarked MP and XLP on a large dataset of decoy protein structures and showed that our scores outperform previously developed scores. We then tested our methodology on three proteins having an open and closed conformation in the Protein Data Bank: Complement component 3 (C3), luciferase, and glutamine-binding periplasmic protein, first generating ensembles using AF2, which were then screened for the open and closed conformations using experimental XL-MS data. In five out of six cases, the most accurate model within the AF2 ensembles-or a conformation within 1 Å of this model-was identified using crosslinks, as assessed through the XLP score. In the remaining case, only the monolinks (assessed through the MP score) successfully identified the open conformation of glutamine-binding periplasmic protein, and these results were further improved by including the \"occupancy\" of the monolinks. This serves as a compelling proof-of-concept for the effectiveness of monolinks. In contrast, the AF2 assessment score was only able to identify the most accurate conformation in two out of six cases. Our results highlight the complementarity of AF2 with experimental methods like XL-MS, with the MP and XLP scores providing reliable metrics to assess the quality of the predicted models. The MP and XLP scoring functions mentioned above are available at https://gitlab.com/topf-lab/xlms-tools.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    革兰氏阴性细菌中的脂多糖(LPS)合成在内膜(IM)的外小叶处完成。在合成之后,七个LPS转运(Lpt)蛋白促进LPS向外膜(OM)的运动,一个重要的过程,如果在任何阶段中断,对细菌活力有致命影响。LptB2FG,Lpt桥系统的IM组件,是VI型ABC转运蛋白,为从IM中提取LPS以及随后通过稳定的蛋白质桥转运到OM的外部小叶提供驱动力。LptC是通过插入由LptFTM5和LptGTM1形成的横向门内的单个跨膜(TM)螺旋锚定到IM的周质蛋白。LptC促进LPS从LptB2FG转移到周质蛋白LptA,并已显示可调节LptB2FG的ATPase活性。这里,在大肠杆菌中使用工程染色体敲除系统来评估体内LptC突变的影响,我们在该必需蛋白的首次无偏倚丙氨酸筛选中鉴定出6个部分功能缺失LptC突变.为了研究这些突变的功能影响,nanoDSF(差示扫描荧光法)和定点自旋标记(SDSL)电子顺磁共振(EPR)光谱与体外ATPase测定相结合,表明LptC的TM螺旋中的特定残基使LptB2FGC复合物不稳定并调节LptB的ATPase活性。本文受版权保护。保留所有权利。
    Lipopolysaccharide (LPS) synthesis in Gram-negative bacteria is completed at the outer leaflet of the inner membrane (IM). Following synthesis, seven LPS transport (Lpt) proteins facilitate the movement of LPS to the outer membrane (OM), an essential process that if disrupted at any stage has lethal effects on bacterial viability. LptB2 FG, the IM component of the Lpt bridge system, is a type VI ABC transporter that provides the driving force for LPS extraction from the IM and subsequent transport across a stable protein bridge to the outer leaflet of the OM. LptC is a periplasmic protein anchored to the IM by a single transmembrane (TM) helix intercalating within the lateral gate formed by LptF TM5 and LptG TM1. LptC facilitates the hand-off of LPS from LptB2 FG to the periplasmic protein LptA and has been shown to regulate the ATPase activity of LptB2 FG. Here, using an engineered chromosomal knockout system in Escherichia coli to assess the effects of LptC mutations in vivo, we identified six partial loss of function LptC mutations in the first unbiased alanine screen of this essential protein. To investigate the functional effects of these mutations, nanoDSF (differential scanning fluorimetry) and site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy in combination with an in vitro ATPase assay show that specific residues in the TM helix of LptC destabilize the LptB2 FGC complex and regulate the ATPase activity of LptB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质质量控制机制对于维持细胞完整性至关重要。丝氨酸蛋白酶的HtrA家族在处理原核周质中的折叠胁迫中起着至关重要的作用。大肠杆菌有三个HtrA成员,即,DegS,DegP,还有DegQ,它们共享一个共同的域结构。粘液,一个假定的类似DegP的HtrA家族成员,参与藻酸盐生物合成调节和应激反应。丁香假单胞菌在人类中引起植物病害和机会性感染。这项研究提出了来自丁香假单胞菌(psMucD)的MucD的高分辨率结构,揭示其组成为具有蛋白酶和PDZ结构域的典型HtrA家族丝氨酸蛋白酶。研究结果表明,含有一个PDZ结构域的psMucD是溶液中的三聚体,psMucD三聚作用由其N端环介导。序列和结构分析揭示了与其他HtrA家族成员的相似性和差异性。此外,这项研究提供了一个PSMucD催化过程的模型,将其与丝氨酸蛋白酶的HtrA家族的其他成员进行比较。
    Protein quality control mechanisms are essential for maintaining cellular integrity, and the HtrA family of serine proteases plays a crucial role in handling folding stress in prokaryotic periplasm. Escherichia coli harbors three HtrA members, namely, DegS, DegP, and DegQ, which share a common domain structure. MucD, a putative HtrA family member that resembles DegP, is involved in alginate biosynthesis regulation and the stress response. Pseudomonas syringae causes plant diseases and opportunistic infections in humans. This study presents the high-resolution structure of MucD from Pseudomonas syringae (psMucD), revealing its composition as a typical HtrA family serine protease with protease and PDZ domains. Its findings suggest that psMucD containing one PDZ domain is a trimer in solution, and psMucD trimerization is mediated by its N-terminal loop. Sequence and structural analyses revealed similarities and differences with other HtrA family members. Additionally, this study provides a model of psMucD\'s catalytic process, comparing it with other members of the HtrA family of serine proteases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号