Peptidyl Transferases

  • 文章类型: Journal Article
    大核糖体RNA(rRNA)在功能上重要的区域在转录后被大量修饰,但是,矛盾的是,修饰酶的单个敲除(KO)对大肠杆菌生长的影响最小。此外,我们最近构建了一种具有五种修饰酶(RluC,RlmKL,RlmN,23SrRNA中肽基转移酶中心(PTC)的“关键区域”的RlmM和RluE),在37°C时仅表现出轻微的生长缺陷(尽管在20°C时主要)。然而,我们组合的KO修饰酶RluC和RlmE(不是RluE)导致条件致死性(在20°C下)。尽管对两种多KO菌株的生长速率进行了表征,这种缺陷的分子解释尚不清楚.这里,我们确定了这些菌株的生化缺陷。从两种菌株中纯化的核糖体在20°C和37°C下的体外快速动力学显示,反直觉,易位的减慢,不形成肽键或释放肽基。体内蛋白质合成的伸长率,根据β-半乳糖苷酶诱导的动力学判断,也放慢了脚步。对于五KO菌株,37℃时最大的缺陷是70S核糖体组装,如通过在5mMMg2+的核糖体蔗糖梯度谱中的主要50S峰判断。从纯化的5-KOrRNA和核糖体蛋白中重建该50S亚基支持在PTC区域修饰本身的核糖体生物发生中的直接作用,而不是修饰酶。这些结果阐明了神秘的rRNA修饰的重要性和作用。
    Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the \'critical region\' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核糖体RNA(rRNA)在转录和随后的成熟过程中被广泛修饰。三种类型的修改,核糖部分的2'-O-甲基化,假吡啶化,和基础修改,通过snoRNA驱动的机制或独立的酶引入。修饰的核苷酸聚集在功能上重要的位点,包括肽基转移酶中心(PTC)。因此,据推测,修饰的核苷酸在确保核糖体的功能性中起着重要作用。在这项研究中,我们证明了七个25SrRNA修饰,包括四个进化保守的修改,在PTC附近可以同时耗尽而不损失细胞活力。构建了缺乏三个snoRNA基因(snR34,snR52和snR65)和/或表达spb1(D52A/E679K)和nop2(C424A/C478A)的无酶活性变体的酵母突变体。结果表明,PTC中的rRNA修饰共同有助于真核细胞中的有效翻译。25SrRNA中七个修饰核苷酸的缺乏导致细胞生长减少,冷灵敏度,翻译水平下降,和超精确的翻译,正如减少的误解和无稽之谈所表明的那样。修饰m5C2870在不存在其他六个修饰的核苷酸时至关重要。因此,PTC周围rRNA修饰核苷酸的模式对于最佳核糖体翻译活性和翻译保真度至关重要。
    Ribosomal RNAs (rRNAs) are extensively modified during the transcription and subsequent maturation. Three types of modifications, 2\'-O-methylation of ribose moiety, pseudouridylation, and base modifications, are introduced either by a snoRNA-driven mechanism or by stand-alone enzymes. Modified nucleotides are clustered at the functionally important sites, including peptidyl transferase center (PTC). Therefore, it has been hypothesised that the modified nucleotides play an important role in ensuring the functionality of the ribosome. In this study, we demonstrate that seven 25S rRNA modifications, including four evolutionarily conserved modifications, in the proximity of PTC can be simultaneously depleted without loss of cell viability. Yeast mutants lacking three snoRNA genes (snR34, snR52, and snR65) and/or expressing enzymatically inactive variants of spb1(D52A/E679K) and nop2(C424A/C478A) were constructed. The results show that rRNA modifications in PTC contribute collectively to efficient translation in eukaryotic cells. The deficiency of seven modified nucleotides in 25S rRNA resulted in reduced cell growth, cold sensitivity, decreased translation levels, and hyperaccurate translation, as indicated by the reduced missense and nonsense suppression. The modification m5C2870 is crucial in the absence of the other six modified nucleotides. Thus, the pattern of rRNA-modified nucleotides around the PTC is essential for optimal ribosomal translational activity and translational fidelity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    翻译系统的演变是寻求生命起源的一个基本问题。可行的进化方案需要能够催化初始肽合成的质子体的自主出现。现代核糖体大亚基中的肽基转移酶中心(PTC)区域被认为保留了这种益生元非编码原核糖体的痕迹,可以从随机的RNA链自组装,催化任意氨基酸之间的肽键形成,并产生短肽。最近,三个研究小组通过实验证明了质子体类似物的几种不同的二聚体结构,基于PTC区域固有的近似2重旋转对称性推导,具有自发折叠的能力,二聚化,催化肽键和短肽的形成。这些二聚体被检查,旨在检索与益生元原染色体特征有关的信息。分析提出了实验室重新创建可靠的质子体类似物的先决条件,包括异二聚体质子体的偏好,与同型二聚体优先的共同信念相矛盾。此外,它衍生出一个动态过程,该过程可能在益生元世界中第一个生物催化肽的自发生产中发挥作用。
    The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DEAD-boxATPases在指导大(60S)核糖体亚基生物发生过程中的rRNA重组事件中起关键作用,但是它们的精确分子功能目前还不清楚。在这项研究中,我们提出了核仁前60S中间体的cryo-EM重建,揭示了一个意想不到的,新生肽基转移酶中心(PTC)内的交替二级结构。我们对三个顺序的核仁pre-60S中间体的分析表明,DEAD-boxATPaseDbp10/DDX54重塑了这种交替的碱基配对,并能够形成rRNA连接,该连接锚定了普遍保守的PTCA环的成熟形式。后催化,Dbp10捕获rRNA螺旋H61,在核仁60S成熟后期启动生物发生因子的协同交换。我们的发现表明,Dbp10活性对于核糖体活性位点的形成至关重要,并揭示了该功能如何与随后的组装步骤整合以驱动大核糖体亚基的生物发生。
    DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    青霉素结合蛋白2(PBP2)通过转肽酶活性交联聚糖链,在细菌细胞壁中形成肽聚糖中起关键作用。PBP2也在空肠弯曲杆菌中发现,引起人类食源性肠炎的致病菌。为了阐明介导其生物学功能的空肠弯曲菌PBP2(cjPBP2)的基本结构特征,我们确定了cjPBP2的晶体结构,并评估了其在各种条件下的蛋白质稳定性。cjPBP2采用细长的两畴结构,由转肽酶结构域和基座结构域组成,并含有转肽酶活性所必需的典型活性位点残基,如在其他PBP2蛋白中观察到的。此外,cjPBP2对β-内酰胺抗生素有反应,包括氨苄青霉素,头孢克洛,还有头孢美唑,提示β-内酰胺类抗生素使cjPBP2失活。与典型的PBP2蛋白相反,cjPBP2是Zn2+结合PBP2蛋白的罕见例子,因为其转肽酶结构域的末端结构通过三个半胱氨酸残基和一个组氨酸残基容纳Zn2+离子。Zn2+结合有助于提高cjPBP2的蛋白质稳定性,为开发新的空肠弯曲杆菌特异性抗菌药物提供了机会,这些药物可以抵消cjPBP2的Zn2+结合能力。
    Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to β-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that β-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在革兰氏阳性和革兰氏阴性细菌中都发现了含有RAPP(ArgAlaProPro)基序的逮捕肽,它们被认为是调节重要的蛋白质定位机器组件的表达。在这里,我们确定了枯草芽孢杆菌和大肠杆菌中RAPP阻滞基序上停滞的核糖体的低温EM结构。结合分子动力学模拟,我们的结构表明,RAPP基序允许A位点tRNA的完全调节,但防止随后的肽键形成。我们的数据支持一个模型,其中P位点中的RAP相互作用并稳定A位点中Pro-tRNA上的单个氢原子,从而防止发生肽键形成所需的亲核攻击的最佳几何形状。这种使核糖体肽基转移酶活性短路的机制可能对在各种细菌系统发育中发现的大多数其他RAPP样停滞肽起作用。
    Arrest peptides containing RAPP (ArgAlaProPro) motifs have been discovered in both Gram-positive and Gram-negative bacteria, where they are thought to regulate expression of important protein localization machinery components. Here we determine cryo-EM structures of ribosomes stalled on RAPP arrest motifs in both Bacillus subtilis and Escherichia coli. Together with molecular dynamics simulations, our structures reveal that the RAPP motifs allow full accommodation of the A-site tRNA, but prevent the subsequent peptide bond from forming. Our data support a model where the RAP in the P-site interacts and stabilizes a single hydrogen atom on the Pro-tRNA in the A-site, thereby preventing an optimal geometry for the nucleophilic attack required for peptide bond formation to occur. This mechanism to short circuit the ribosomal peptidyltransferase activity is likely to operate for the majority of other RAPP-like arrest peptides found across diverse bacterial phylogenies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内质网(ER)上的停滞核糖体被60S核糖体亚基蛋白RPL26(也称为uL24)1,2上的泛素样蛋白UFM1共价修饰。这个修改,被称为UFMylation,由UFM1核糖体E3连接酶(UREL)复合物编排,包括UFL1,UFBP1和CDK5RAP3(参考。3).然而,UREL的催化机理和UFM1化的功能后果尚不清楚。在这里,我们介绍了与60S核糖体结合的UREL的冷冻电子显微镜结构,揭示其底物特异性的基础。UREL包裹在60S亚基周围,形成C形钳夹结构,在一端阻断tRNA结合位点,和肽出口隧道在另一个。UFL1环插入并重塑肽基转移酶中心。UREL的这些特征表明UFMylation在从ER膜释放和回收停滞或终止的核糖体中的关键作用。在没有功能性UREL的情况下,60S-SEC61转位复合物在ER膜上积累,证明UFMylation对于从60S亚基释放SEC61是必需的。值得注意的是,UREL从“writer”到“reader”模块的功能切换促进了此发布,该模块可识别其产品UFMylated60S核糖体。总的来说,我们确定了UREL在从SEC61转位子解离60S亚基中的基本作用,以及UFMylation在调节ER蛋白质稳态中的基础。
    Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a \'writer\' to a \'reader\' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    泛素和泛素样蛋白(UBLs)对靶蛋白的可逆修饰被真核细胞广泛用于控制蛋白命运和细胞行为1。UFM1是一种UBL,主要修饰单个核糖体蛋白上的单个赖氨酸残基,uL24(也称为RPL26),在内质网(ER)2,3的细胞质表面的核糖体上。UFM1缀合(UFMylation)有助于挽救60S核糖体亚基(60S),这些核糖体亚基在核糖体相关的质量控制介导的核糖体分裂后释放,这些核糖体在分泌蛋白共翻译易位期间停止进入ER3,4。UFMylation机制实现如此精确的靶标选择的分子机制以及这种核糖体修饰如何促进60S拯救都是未知的。在这里,我们显示了体内核糖体UFM化发生在游离的60S上,并且我们提供了异源三聚体UFM1E3连接酶(E3(UFM1))与其底物uL24接合的顺序冷冻电子显微镜快照。E3(UFM1)结合L1茎,通过UFL1的羧基末端结构域空转移RNA结合位点和肽基转移酶中心,导致uL24修饰超过150µ。催化UFM1转移后,E3(UFM1)保持稳定地结合到其产品上,UFMylated60S,形成C形夹,从转移RNA结合位点到多肽隧道出口一直延伸到60S。我们的结构和生化分析表明E3(UFM1)在终止后释放和从ER膜回收大核糖体亚基中的作用。
    Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质的拓扑转化和排列作为产生新的蛋白质功能性或稳定性的策略已经引起了极大的兴趣。这些努力主要受到自然发生的翻译后修饰的启发,例如头对尾环化,循环排列,或者套索般的纠缠.这种方法可以通过基因编码来促进,在循环排列的情况下,或者通过酶处理,在环化的情况下。值得注意的是,这些先前描述的策略使多肽骨架取向保持不变。这里我们描述了一种非天然的蛋白质排列,蛋白质结构域倒置,由此,蛋白质的C-末端部分相对于蛋白质的N-末端部分从典型的N-至-C酶转化为C-至-C构型。最接近的概念上类似的生物过程可能是重组酶催化的DNA片段的倒置。我们使用工程分选酶A实现了这些倒置,一种广泛使用的转肽酶。我们的反应在4-25°C的温和条件下有效进行,并且与完全异源产生的蛋白质底物相容。
    Topological transformations and permutations of proteins have attracted significant interest as strategies to generate new protein functionalities or stability. These efforts have mainly been inspired by naturally occurring post-translational modifications, such as head-to-tail cyclization, circular permutation, or lasso-like entanglement. Such approaches can be realized experimentally via genetic encoding, in the case of circular permutation, or via enzymatic processing, in the case of cyclization. Notably, these previously described strategies leave the polypeptide backbone orientation unaltered. Here we describe an unnatural protein permutation, the protein domain inversion, whereby a C-terminal portion of a protein is enzymatically inverted from the canonical N-to-C to a C-to-C configuration with respect to the N-terminal part of the protein. The closest conceptually analogous biological process is perhaps the inversion of DNA segments as catalyzed by recombinases. We achieve these inversions using an engineered sortase A, a widely used transpeptidase. Our reactions proceed efficiently under mild conditions at 4-25 °C and are compatible with entirely heterologously-produced protein substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌细胞壁肽聚糖由通过短肽茎交联的聚糖链制成。交联由DD-转肽酶(4,3-交联)和LD-转肽酶(3,3-交联)催化。然而,最近对非模型物种的研究揭示了新的交联类型,表明存在未表征的酶。这里,我们鉴定出一种LD-转肽酶,LDTGo,在乙酸细菌氧化葡糖杆菌中产生1,3-交联。在缺乏LD3,3-转肽酶的α-和β-变形杆菌中发现了LDTGo样蛋白。与典型的LD-和DD-转肽酶的严格特异性相反,LDTGo可以使用非末端氨基酸部分进行交联。与LD3,3-转肽酶相比,LDTGo的高分辨率晶体结构揭示了独特的特征,包括似乎限制底物进入的富含脯氨酸的区域,和一个容纳聚糖链和多肽的腔,源于供体muropeptides。最后,我们表明,DD交联周转参与为LD1,3-转肽化提供必要的底物。这种现象强调了不同的交联机制在维持氧化银中细胞壁完整性方面的相互作用。
    The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号