Parainfluenza Vaccines

  • 文章类型: Journal Article
    人类副流感病毒3型(HPIV3)是一种主要的儿科呼吸道病原体,缺乏可用的疫苗或抗病毒药物。我们通过密码子对去优化(CPD)产生了活的减毒HPIV3疫苗候选物。HPIV3开放阅读框(ORFs)编码核蛋白(N),磷蛋白(P),矩阵(M),融合(F),血凝素-神经氨酸酶(HN),和聚合酶(L)被单独或组合修饰以产生12种病毒,命名为Min-N,Min-P,Min-M,Min-FHN,Min-L,Min-NP,Min-NPM,最小不良贷款,Min-PM,Min-PFHN,Min-MFHN,和Min-PMFHN。N或L的CPD严重降低了体外生长,没有进一步评估。P或M的CPD与体外干扰素(IFN)反应增加和减少有关,分别,但对病毒复制影响不大。在Vero细胞中,F和HN延迟病毒复制的CPD,但最终滴度与野生型(wt)HPIV3相当。在人肺上皮A549细胞中,CPDF和HN诱导更强的IFN应答,病毒滴度降低了100倍,F和HN蛋白的表达显着降低,而不影响N或P或蛋白质在病毒体中的相对包装。仓鼠鼻内感染后,对于携带CPDF和HN的病毒,鼻甲和肺中的复制倾向于减少最多,最大减少约10倍。尽管体内复制减少(体外CPDF和HN的表达降低),所有病毒均诱导与wt相似的血清HPIV3中和抗体滴度,并提供针对HPIV3攻击的完全保护。总之,HPIV3的CPD产生了适合进一步开发的有希望的疫苗候选物。
    Human parainfluenza virus type 3 (HPIV3) is a major pediatric respiratory pathogen lacking available vaccines or antiviral drugs. We generated live-attenuated HPIV3 vaccine candidates by codon-pair deoptimization (CPD). HPIV3 open reading frames (ORFs) encoding the nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and polymerase (L) were modified singly or in combination to generate 12 viruses designated Min-N, Min-P, Min-M, Min-FHN, Min-L, Min-NP, Min-NPM, Min-NPL, Min-PM, Min-PFHN, Min-MFHN, and Min-PMFHN. CPD of N or L severely reduced growth in vitro and was not further evaluated. CPD of P or M was associated with increased and decreased interferon (IFN) response in vitro, respectively, but had little effect on virus replication. In Vero cells, CPD of F and HN delayed virus replication, but final titers were comparable to wild-type (wt) HPIV3. In human lung epithelial A549 cells, CPD F and HN induced a stronger IFN response, viral titers were reduced 100-fold, and the expression of F and HN proteins was significantly reduced without affecting N or P or the relative packaging of proteins into virions. Following intranasal infection in hamsters, replication in the nasal turbinates and lungs tended to be the most reduced for viruses bearing CPD F and HN, with maximum reductions of approximately 10-fold. Despite decreased in vivo replication (and lower expression of CPD F and HN in vitro), all viruses induced titers of serum HPIV3-neutralizing antibodies similar to wt and provided complete protection against HPIV3 challenge. In summary, CPD of HPIV3 yielded promising vaccine candidates suitable for further development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类偏肺病毒(hMPV)和3型副流感病毒(PIV3)是儿童常见的呼吸道疾病。基于mRNA的疫苗的安全性和免疫原性,在hMPV/PIV3血清阳性儿童中评估了编码hMPV和PIV3的膜锚定融合蛋白的mRNA-1653。
    在此阶段1b随机化,观察者盲,安慰剂对照,剂量范围研究,hMPV/PIV3血清阳性的儿童被顺序纳入2剂量水平的mRNA-1653,间隔2个月给药;12至36个月的儿童被随机分配(1:1)接受10-μgmRNA-1653或安慰剂,12至59个月的儿童被随机分配(3:1)接受30-μgmRNA-1653或安慰剂。
    总的来说,27名年龄在18至55个月的参与者被随机分配;15名参与者接受了10μgmRNA-1653(n=8)或安慰剂(n=7),而12名参与者接受了30μgmRNA-1653(n=9)或安慰剂(n=3)。mRNA-1653在两种剂量水平下都具有良好的耐受性。唯一报告的征求局部不良反应是注射部位的压痛;征求全身不良反应包括1级或2级寒战。烦躁,食欲不振,和困倦。单次注射10-μg或30-μgmRNA-1653可增加hMPV和PIV3中和抗体滴度(相对于基线的几何平均倍数上升比:hMPV-A=2.9-6.1;hMPV-B=6.2-13.2;PIV3=2.8-3.0)和preF和postF结合抗体浓度(几何平均倍数上升比:hMPVpreF=5.3-6.1;这些儿童中的第结合抗体应答通常是preF偏倚的。
    mRNA-1653在12至59个月的血清阳性儿童中具有良好的耐受性,并提高了hMPV和PIV3抗体水平,支持mRNA-1653或其成分的持续发展,以预防hMPV和PIV3。
    OBJECTIVE: Human metapneumovirus (hMPV) and parainfluenza virus type 3 (PIV3) are common respiratory illnesses in children. The safety and immunogenicity of an investigational mRNA-based vaccine, mRNA-1653, encoding membrane-anchored fusion proteins of hMPV and PIV3, was evaluated in hMPV/PIV3-seropositive children.
    METHODS: In this phase 1b randomized, observer-blind, placebo-controlled, dose-ranging study, hMPV/PIV3-seropositive children were enrolled sequentially into 2 dose levels of mRNA-1653 administered 2 months apart; children aged 12 to 36 months were randomized (1:1) to receive 10-μg of mRNA-1653 or placebo and children aged 12 to 59 months were randomized (3:1) to receive 30-μg of mRNA-1653 or placebo.
    RESULTS: Overall, 27 participants aged 18 to 55 months were randomized; 15 participants received 10-μg of mRNA-1653 (n = 8) or placebo (n = 7), whereas 12 participants received 30-μg of mRNA-1653 (n = 9) or placebo (n = 3). mRNA-1653 was well-tolerated at both dose levels. The only reported solicited local adverse reaction was tenderness at injection site; solicited systemic adverse reactions included grade 1 or 2 chills, irritability, loss of appetite, and sleepiness. A single 10-μg or 30-μg mRNA-1653 injection increased hMPV and PIV3 neutralizing antibody titers (geometric mean fold-rise ratio over baseline: hMPV-A = 2.9-6.1; hMPV-B = 6.2-13.2; PIV3 = 2.8-3.0) and preF and postF binding antibody concentrations (geometric mean fold-rise ratio: hMPV preF = 5.3-6.1; postF = 4.6-6.5 and PIV3 preF = 13.9-14.2; postF = 11.0-12.1); a second injection did not further increase antibody levels in these seropositive children. Binding antibody responses were generally preF biased.
    CONCLUSIONS: mRNA-1653 was well-tolerated and boosted hMPV and PIV3 antibody levels in seropositive children aged 12 to 59 months, supporting the continued development of mRNA-1653 or its components for the prevention of hMPV and PIV3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Human respiratory syncytial virus (RSV) and parainfluenza virus type 3 (HPIV3) are among the most common viral causes of childhood bronchiolitis and pneumonia worldwide, and lack effective antiviral drugs or vaccines. Recombinant (r) HPIV3 was modified to express the RSV fusion (F) glycoprotein, the major RSV neutralization and protective antigen, providing a live intranasal bivalent HPIV3/RSV vaccine candidate. This extends previous studies using a chimeric bovine-human PIV3 vector (rB/HPIV3). One advantage is that rHPIV3 expresses all of the HPIV3 antigens compared to only two for rB/HPIV3. In addition, the use of rHPIV3 as vector should avoid excessive attenuation following addition of the modified RSV F gene, which may occur with rB/HPIV3. To enhance its immunogenicity, RSV F was modified (i) to increase the stability of the prefusion (pre-F) conformation and (ii) by replacement of its transmembrane (TM) and cytoplasmic tail (CT) domains with those of HPIV3 F (H3TMCT) to increase incorporation in the vector virion. RSV F (+/- H3TMCT) was expressed from the first (F/preN) or the second (F/N-P) gene position of rHPIV3. The H3TMCT modification dramatically increased packaging of RSV F into the vector virion and, in hamsters, resulted in significant increases in the titer of high-quality serum RSV-neutralizing antibodies, in addition to the increase conferred by pre-F stabilization. Only F-H3TMCT/preN replication was significantly attenuated in the nasal turbinates by the RSV F insert. F-H3TMCT/preN, F/N-P, and F-H3TMCT/N-P provided complete protection against wt RSV challenge. F-H3TMCT/N-P exhibited the most stable and highest expression of RSV F, providing impetus for its further development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Human parainfluenza virus 3 (PIV3) and respiratory syncytial virus (RSV) are major causative agents of serious respiratory tract illness in newborns and infants. Maternal vaccination could be a promising approach to provide immediate protection against severe PIV3 and RSV infection in young infants. Previously, we demonstrated that maternal immunization with a subunit vaccine consisting of the RSV fusion (F) protein formulated with TriAdj, an adjuvant consisting of poly(I:C), immune defense regulatory peptide and polyphosphazene, protects newborn lambs from RSV. In the present study we evaluated the protective efficacy of a novel bivalent RSV-PIV3 vaccine candidate, FRipScHN/TriAdj, as a maternal vaccine against PIV3 infection in a neonatal lamb model. This vaccine consists of the pre-fusion form of the RSV F protein linked to the haemagglutinin-neuraminidase (HN) of PIV3, formulated with TriAdj. First, we successfully established PIV3 infection in neonatal lambs. Lambs infected with human PIV3 showed gross pathology, bronchointerstitial pneumonia and viral replication in the lungs. Subsequently, ewes were immunized with FRipScHN/TriAdj. RSV FRipSc- and PIV3 HN-specific antibodies with virus-neutralizing activity were detected in both the serum and the colostrum of the vaccinated ewes. The newborn lambs had RSV- and PIV3- neutralizing antibodies in their serum, which demonstrates that maternal antibodies were transferred to the neonates. At three days of age, the newborn lambs received an intrapulmonary challenge with PIV3. The lung pathology and virus production were significantly reduced in lambs that had received PIV3-specific maternal antibodies compared to lambs born to non-vaccinated ewes. These results suggest that maternal vaccination with a bivalent FRipScHN/TriAdj vaccine might be an effective method to provide protection against both PIV3 and RSV in neonates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Childhood vaccination has played a critical role in the reduction of morbidity and mortality from communicable diseases, including specific respiratory pathogens. Acute lower respiratory infection (ALRI) of both bacterial and viral aetiology continues to impact global child health. Key bacterial pathogens including Streptococcus pneumoniae and Haemophilus influenza type b are specifically targeted with current vaccination programmes, while at present there are less effective strategies for the prevention of viral disease. Influenza vaccines, including both live attenuated intranasal vaccines and inactivated influenza vaccines, are limited by seasonal strain variation and unsustained immunity. Research into the development of a universal influenza vaccine is ongoing; potential targets are the conserved regions of the virus such as the M2e antigen and hemagglutinin stalk. Respiratory syncytial virus (RSV) and parainfluenza virus 3 (PIV3) are the viral pathogens most commonly causing ALRI in children, particularly the infant population. Currently, no vaccine exists for either virus. Over the last decade, promising advances have been made. Protection of neonates via maternal RSV immunisation is being assessed in a phase III clinical trial, with many other candidates for RSV and PIV3 at less advanced stages of development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Clinical Trial
    BACKGROUND: Canine adenovirus 2, parainfluenza, and Bordetella bronchiseptica cause respiratory disease in dogs, and each has a modified live intranasal vaccine available. Molecular diagnostic assays to amplify specific nucleic acids are available for each of these agents. If positive molecular diagnostic assay results are common after vaccination, the positive predictive value of the diagnostic assays for disease would be decreased.
    OBJECTIVE: To determine the impact of administration of commercially available modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza vaccine has on the results of a commercially available PCR panel.
    METHODS: Eight puppies from a research breeding facility negative for these pathogens.
    METHODS: Blinded prospective pilot study. Puppies were vaccinated with a single dose of modified live topical adenovirus 2, B. bronchiseptica, and parainfluenza and parenteral dose of adenovirus 2, canine distemper virus, and parvovirus. Nasal and pharyngeal swabs were collected on multiple days and submitted for PCR assay.
    RESULTS: Nucleic acids of all 3 organisms contained in the topical vaccine were detected from both samples multiple times through 28 days after vaccination with higher numbers of positive samples detected between days 3 and 10 after vaccination.
    CONCLUSIONS: Vaccine status should be considered when interpreting respiratory agent PCR results if modified live vaccines have been used. Development of quantitative PCR and wild-type sequencing are necessary to improve positive predictive value of these assays by distinguishing vaccinate from natural infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Clinical Trial, Phase I
    We conducted a phase I clinical trial (clinicaltrials.gov identifier, NCT00641017) of the experimental live-attenuated human parainfluenza virus type 1 (HPIV-1) vaccine rHPIV-1/84/del 170/942A sequentially in 3 groups: adults, HPIV-1-seropositive children, and HPIV-1-seronegative children, the target population for vaccination. rHPIV-1/84/del 170/942A was appropriately restricted in replication in adults and HPIV-1-seropositive children but was overattenuated (ie, insufficiently infectious and immunogenic) for HPIV-1-seronegative children.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    • On the basis of strong epidemiologic evidence, influenza and parainfluenza viruses are responsible for significant morbidity and mortality in young infants and children and in persons with chronic medical conditions. (1)(4)(26)(27)(35). • On the basis of research evidence, influenza vaccines are effective in preventing disease in high-risk individuals. (8)(17)(18). • On the basis of strong research evidence, influenza vaccines are safe in young infants and children 6 months or older. (8)(15).• On the basis of research evidence, the use of corticosteroids and epinephrine is beneficial in the treatment of laryngotracheitis caused by parainfluenza viruses. (44)(45)(46)(47). • Strong evidence supports the use of influenza vaccines in pregnant mothers as a strategy to prevent disease in infants younger than 6 months. (17)(18)(19).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Influenza virus and human parainfluenza virus (HPIV) are major etiologic agents of acute respiratory illness in young children. Inactivated and live attenuated influenza vaccines are approved in several countries, yet no vaccine is licensed for HPIV. We previously showed that a replication-incompetent PB2-knockout (PB2-KO) virus that possesses a reporter gene in the coding region of the PB2 segment can serve as a platform for a bivalent vaccine. To develop a bivalent vaccine against influenza and parainfluenza virus, here, we generated a PB2-KO virus possessing the hemagglutinin-neuraminidase (HN) glycoprotein of HPIV type 3 (HPIV3), a major surface antigen of HPIV, in its PB2 segment. We confirmed that this virus replicated only in PB2-expressing cells and expressed HN. We then examined the efficacy of this virus as a bivalent vaccine in a hamster model. High levels of virus-specific IgG antibodies in sera and IgA, IgG, and IgM antibodies in bronchoalveolar lavage fluids against both influenza virus and HPIV3 were detected from hamsters immunized with this virus. The neutralizing capability of these serum antibodies was also confirmed. Moreover, the immunized hamsters were completely protected from virus challenge with influenza virus or HPIV3. These results indicate that PB2-KO virus expressing the HN of HPIV3 has the potential to be a novel bivalent vaccine against influenza and human parainfluenza viruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:人副流感病毒3型(HPIV3)是婴幼儿上呼吸道和下呼吸道疾病的常见原因。已在婴儿中评估了减毒的冷适应HPIV3活疫苗,但尚未确定第二剂疫苗的合适施用间隔。
    方法:在一项盲法研究中,6至36个月大的HPIV3血清阴性儿童以2:1的比例随机分配,接受两种剂量的10TCID(50%组织培养感染剂量)的活减毒,重组冷传代人PIV3疫苗(rHPIV3cp45)或安慰剂间隔6个月。在每个剂量之前和之后约4-6周评估血清抗体水平。疫苗病毒感染性,定义为在鼻洗液中检测到疫苗HPIV3和/或血清抗体滴度升高≥4倍,免疫后第3、7和14天评估反应原性。
    结果:纳入40名HPIV3血清阴性儿童(中位年龄13个月;范围6-35个月);27名(68%)接受疫苗接种,13名(32%)接受安慰剂。在剂量1后的26个可评估的疫苗接种者中的25个(96%)和剂量2后的26个受试者中的9个(35%)中检测到了感染性。在那些摆脱病毒的人中,剂量1和剂量2后6天(范围3-8天),病毒脱落的中位持续时间为12天(范围6-15天),剂量1后平均峰值log10病毒滴度为3.4PFU/mL(SD:1.0),而剂量2后为1.5PFU/mL(SD:0.92).总的来说,反应原性温和,疫苗组和安慰剂组之间的发烧和上呼吸道感染症状的发生率没有差异。
    结论:rHPIV3cp45在血清阴性的幼儿中具有免疫原性和良好的耐受性。最初剂量后6个月的第二剂量限制在先前感染疫苗病毒的人中;然而,第二剂增强了抗体反应,并诱导了两名先前未感染的儿童的抗体反应.
    BACKGROUND: Human parainfluenza virus type 3 (HPIV3) is a common cause of upper and lower respiratory tract illness in infants and young children. Live-attenuated cold-adapted HPIV3 vaccines have been evaluated in infants but a suitable interval for administration of a second dose of vaccine has not been defined.
    METHODS: HPIV3-seronegative children between the ages of 6 and 36 months were randomized 2:1 in a blinded study to receive two doses of 10⁵ TCID₅₀ (50% tissue culture infectious dose) of live-attenuated, recombinant cold-passaged human PIV3 vaccine (rHPIV3cp45) or placebo 6 months apart. Serum antibody levels were assessed prior to and approximately 4-6 weeks after each dose. Vaccine virus infectivity, defined as detection of vaccine-HPIV3 in nasal wash and/or a≥4-fold rise in serum antibody titer, and reactogenicity were assessed on days 3, 7, and 14 following immunization.
    RESULTS: Forty HPIV3-seronegative children (median age 13 months; range 6-35 months) were enrolled; 27 (68%) received vaccine and 13 (32%) received placebo. Infectivity was detected in 25 (96%) of 26 evaluable vaccinees following doses 1 and 9 of 26 subject (35%) following dose 2. Among those who shed virus, the median duration of viral shedding was 12 days (range 6-15 days) after dose 1 and 6 days (range 3-8 days) after dose 2, with a mean peak log₁₀ viral titer of 3.4 PFU/mL (SD: 1.0) after dose 1 compared to 1.5 PFU/mL (SD: 0.92) after dose 2. Overall, reactogenicity was mild, with no difference in rates of fever and upper respiratory infection symptoms between vaccine and placebo groups.
    CONCLUSIONS: rHPIV3cp45 was immunogenic and well-tolerated in seronegative young children. A second dose administered 6 months after the initial dose was restricted in those previously infected with vaccine virus; however, the second dose boosted antibody responses and induced antibody responses in two previously uninfected children.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号