PPRF

  • 文章类型: Case Reports
    The association of internuclear ophthalmoplegia (INO) with exotropia in the contralateral eye is a rare finding, known as non-paralytic pontine exotropia (NPPE). We report a case of an 80-year-old woman with acute onset of diplopia on admission who presented with left eye exotropia with left-beating nystagmus whilst fixating with the right eye and inability to adduct the right eye on left gaze. Brain magnetic resonance imaging showed two small areas of vertebrobasilar territory ischaemic stroke, one beneath the inferior portion of the aqueduct and another in the right occipital lobe. Our case highlights an interesting clinical manifestation of brainstem infarction that, along with ocular motility examination, allowed us to review its pathophysiology, including the influence of the contralateral paramedian pontine reticular formation stimulation in the mechanism of contralateral exotropia in NPPE. The fast clinical resolution of these cases can explain the scarcity of NPPE reports.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The central mesencephalic reticular formation (cMRF) occupies much of the core of the midbrain tegmentum. Physiological studies indicate that it is involved in controlling gaze changes, particularly horizontal saccades. Anatomically, it receives input from the ipsilateral superior colliculus (SC) and it has downstream projections to the brainstem, including the horizontal gaze center located in the paramedian pontine reticular formation (PPRF). Consequently, it has been hypothesized that the cMRF plays a role in the spatiotemporal transformation needed to convert spatially coded collicular saccade signals into the temporally coded signals utilized by the premotor neurons of the horizontal gaze center. In this study, we used neuroanatomical tracers to examine the patterns of connectivity of the cMRF in macaque monkeys in order to determine whether the circuit organization supports this hypothesis. Since stimulation of the cMRF produces contraversive horizontal saccades and stimulation of the horizontal gaze center produces ipsiversive saccades, this would require an excitatory cMRF projection to the contralateral PPRF. Injections of anterograde tracers into the cMRF did produce labeled terminals within the PPRF. However, the terminations were denser ipsilaterally. Since the PPRF located contralateral to the movement direction is generally considered to be silent during a horizontal saccade, we then tested the hypothesis that this ipsilateral reticuloreticular pathway might be inhibitory. The ultrastructure of ipsilateral terminals was heterogeneous, with some displaying more extensive postsynaptic densities than others. Postembedding immunohistochemistry for gamma-aminobutyric acid (GABA) indicated that only a portion (35%) of these cMRF terminals are GABAergic. Dual tracer experiments were undertaken to determine whether the SC provides input to cMRF reticuloreticular neurons projecting to the ipsilateral pons. Retrogradely labeled reticuloreticular neurons were predominantly distributed in the ipsilateral cMRF. Anterogradely labeled tectal terminals were observed in close association with a portion of these retrogradely labeled reticuloreticular neurons. Taken together, these results suggest that the SC does have connections with reticuloreticular neurons in the cMRF. However, the predominantly excitatory nature of the ipsilateral reticuloreticular projection argues against the hypothesis that this cMRF pathway is solely responsible for producing a spatiotemporal transformation of the collicular saccade signal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    斜视是一种常见疾病,以眼睛慢性错位和许多视觉和动眼异常为特征。例如,扫视通常是高度不共轭的。对于患有模式斜视的人类来说,水平和垂直的差异随眼睛位置而变化。在猴子身上,在生命的头几周内干扰双眼视觉的操作会导致慢性斜视,其特征与人类患者的特征非常匹配。早发性斜视与视觉皮层神经元的双眼敏感性改变有关。在这里,我们测试了特定于扫视眼球运动的脑干回路异常的假设。我们瞄准了脑桥旁正中网状结构,直接投射到同侧外展核的结构。在正常动物中,这种结构中的神经元的特征是与同色扫视相关的高频尖峰爆发。我们记录了来自四只猴子的84个神经元的单单位活动(两个正常,一个外带,和一个esotrope),而他们在切线屏幕上对视觉目标进行扫视。从正常动物记录的所有24个神经元在纯水平的30°内具有优选的方向。对于斜视动物,首选方向的分布在大脑的一侧是正常的,但另一方面高度可变。事实上,从斜视动物记录的12/60神经元更喜欢垂直扫视。许多人也有异常微弱或强烈的爆发。这些数据表明,婴儿期相应的双眼视力丧失会损害脑干中扫视相关神经元的正常调谐特征的发展。
    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The ocular motor system provides several advantages for studying the brain, including well-defined populations of neurons that contribute to specific eye movements. Generation of rapid eye movements (saccades) depends on excitatory burst neurons (EBN) and omnipause neurons (OPN) within the brainstem, both types of cells are highly active. Experimental lesions of EBN and OPN cause slowing or complete loss of saccades. We report a patient who developed a permanent, selective saccadic palsy following cardiac surgery. When she died several years later, surprisingly, autopsy showed preservation of EBN and OPN. We therefore considered other mechanisms that could explain her saccadic palsy. Recent work has shown that both EBN and OPN are ensheathed by perineuronal nets (PN), which are specialized extracellular matrix structures that may help stabilize synaptic contacts, promote local ion homeostasis, or play a protective role in certain highly active neurons. Here, we review the possibility that damage to PN, rather than to the neurons they support, could lead to neuronal dysfunction-such as saccadic palsy. We also suggest how future studies could test this hypothesis, which may provide insights into the vulnerability of other active neurons in the nervous system that depend on PN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Primates explore a visual scene through a succession of saccades. Much of what is known about the neural circuitry that generates these movements has come from neurophysiological studies using subjects with their heads restrained. Horizontal saccades and the horizontal components of oblique saccades are associated with high-frequency bursts of spikes in medium-lead burst neurons (MLBs) and long-lead burst neurons (LLBNs) in the paramedian pontine reticular formation. For LLBNs, the high-frequency burst is preceded by a low-frequency prelude that begins 12-150 ms before saccade onset. In terms of the lead time between the onset of prelude activity and saccade onset, the anatomical projections, and the movement field characteristics, LLBNs are a heterogeneous group of neurons. Whether this heterogeneity is endemic of multiple functional subclasses is an open question. One possibility is that some may carry signals related to head movement. We recorded from LLBNs while monkeys performed head-unrestrained gaze shifts, during which the kinematics of the eye and head components were dissociable. Many cells had peak firing rates that never exceeded 200 spikes/s for gaze shifts of any vector. The activity of these low-frequency cells often persisted beyond the end of the gaze shift and was usually related to head-movement kinematics. A subset was tested during head-unrestrained pursuit and showed clear modulation in the absence of saccades. These \"low-frequency\" cells were intermingled with MLBs and traditional LLBNs and may represent a separate functional class carrying signals related to head movement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: Saccade disconjugacy in strabismus could result from any of a number of factors, including abnormalities of eye muscles, the plant, motoneurons, near response cells, or atypical tuning of neurons in saccade-related areas of the brain. This study was designed to investigate the possibility that saccade disconjugacy in strabismus is associated with abnormalities in paramedian pontine reticular formation (PPRF).
    METHODS: We applied microstimulation to 22 sites in PPRF and 20 sites in abducens nucleus in three rhesus macaque monkeys (one normal, one esotrope, and one exotrope).
    RESULTS: When mean velocity was compared between the two eyes, a slight difference was found for 1/5 sites in the normal animal. Significant differences were found for 5/6 sites in an esotrope and 10/11 sites in an exotrope. For five sites in the strabismic monkeys, the directions of evoked movements differed by more than 40° between the two eyes. When stimulation was applied to abducens nucleus (20 sites), the ipsilateral eye moved faster for 4/6 sites in the normal animal and all nine sites in the esotrope. For the exotrope, however, the left eye always moved faster, even for three sites on the right side. For the strabismic animals, stimulation of abducens nucleus often caused a different eye to move faster than stimulation of PPRF.
    CONCLUSIONS: These data suggest that PPRF is organized at least partly monocularly in strabismus and that disconjugate saccades are at least partly a consequence of unbalanced saccadic commands being sent to the two eyes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号