PINK1

PINK1
  • 文章类型: Journal Article
    帕金森病(PD)的发病机制与线粒体功能障碍有关。鉴于PINK1/Parkin通路通过诱导线粒体自噬去除受损线粒体来控制线粒体质量控制,激活PINK1/Parkin介导的线粒体自噬的治疗方法具有治疗PD的潜力。这里,我们发现了一个新的小分子,BL-918,通过激活PINK1/Parkin通路作为线粒体自噬的诱导剂。BL-918触发PINK1积累和Parkin线粒体易位以启动PINK1/Parkin介导的线粒体自噬。我们发现线粒体膜电位和线粒体通透性转换(mPT)孔参与BL-918诱导的PINK1/Parkin通路激活。此外,我们发现BL-918以PINK1依赖性方式减轻MPTP诱导的PD小鼠的PD进展.我们的结果揭示了PINK1/Parkin信号通路的新激活剂,并为PD和其他线粒体功能失调的疾病的治疗提供了潜在的策略。
    The pathogenesis of Parkinson\'s disease (PD) has been associated with mitochondrial dysfunction. Given that the PINK1/Parkin pathway governs mitochondrial quality control by inducing mitophagy to remove damaged mitochondria, therapeutic approaches to activate PINK1/Parkin-mediated mitophagy have the potential in the treatment of PD. Here, we have identified a new small molecule, BL-918, as an inducer of mitophagy via activating the PINK1/Parkin pathway. BL-918 triggers PINK1 accumulation and Parkin mitochondrial translocation to initiate PINK1/Parkin-mediated mitophagy. We found that mitochondrial membrane potential and mitochondrial permeability transition (mPT) pore were involved in BL-918-induced PINK1/Parkin pathway activation. Moreover, we showed that BL-918 mitigated PD progression in MPTP-induced PD mice in a PINK1-dependent manner. Our results unravel a new activator of the PINK1/Parkin signaling pathway and provide a potential strategy for the treatment of PD and other diseases with dysfunctional mitochondria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PINK1,在帕金森氏病的家族形式中突变,线粒体去极化后启动线粒体自噬。然而,由于PINK1的丢失不会改变大多数组织的基础线粒体自噬水平,因此很难在小鼠中从生理上监测该途径.为了在体内进一步表征该途径,我们使用了mito-QC小鼠,其中PINK1缺失与线粒体相关的POLGD257A突变相结合.我们关注骨骼肌,因为基因表达数据表明该组织具有最高的PINK1水平。我们发现氧化性后肢肌肉中PINK1的丢失显着降低了线粒体自噬。感兴趣的,POLGD257A突变的存在,虽然对大多数组织影响较小,PINK1丢失引起的肌肉有丝分裂水平的恢复。尽管我们的观察强调了多个线粒体自噬途径在单个组织中运作,我们确定骨骼肌是基础条件下PINK1依赖性线粒体自噬研究的首选组织.
    PINK1, mutated in familial forms of Parkinson\'s disease, initiates mitophagy following mitochondrial depolarization. However, it is difficult to monitor this pathway physiologically in mice as loss of PINK1 does not alter basal mitophagy levels in most tissues. To further characterize this pathway in vivo, we used mito-QC mice in which loss of PINK1 was combined with the mitochondrial-associated POLGD257A mutation. We focused on skeletal muscle as gene expression data indicates that this tissue has the highest PINK1 levels. We found that loss of PINK1 in oxidative hindlimb muscle significantly reduced mitophagy. Of interest, the presence of the POLGD257A mutation, while having a minor effect in most tissues, restored levels of muscle mitophagy caused by the loss of PINK1. Although our observations highlight that multiple mitophagy pathways operate within a single tissue, we identify skeletal muscle as a tissue of choice for the study of PINK1-dependant mitophagy under basal conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:脓毒症相关性脑病(SAE)是一种以全身性感染引起的神经炎症和认知功能障碍为特征的疾病。炎症诱导的小胶质细胞活化与SAE中的神经炎症密切相关。广泛理解的是,褪黑激素具有对于败血症相关的脑损伤有益的强抗炎和免疫调节特性。然而,褪黑素在SAE中的作用机制尚未完全阐明。
    方法:采用脂多糖(LPS)诱导SAE细胞模型和SAE小鼠模型。进行行为测试以分析认知功能。通过免疫荧光测量小胶质细胞标志物和M1/M2标志物。通过蛋白质印迹评估线粒体自噬,MT-Keima和透射电子显微镜实验。免疫沉淀和共免疫沉淀测定研究了AMP激活的蛋白激酶α2(AMPKα2)与PTEN诱导的推定激酶1(PINK1)之间的相互作用。
    结果:褪黑素通过增强线粒体自噬抑制LPS诱导的小胶质细胞M1极化,从而减轻LPS诱导的神经炎症和行为缺陷。然而,抑制或敲低AMPKα2可以抑制褪黑素对线粒体自噬的增强,然后减弱其促进小胶质细胞向M2表型的极化,并消除其对大脑功能的保护作用。此外,褪黑素通过激活AMPKα2增强线粒体自噬,促进PINK1Ser495位点磷酸化,并最终调节从M1到M2的小胶质细胞极化。
    结论:我们的研究结果表明,褪黑素促进小胶质细胞向M2表型极化,以减轻LPS诱导的神经炎症,主要通过AMPKα2介导的线粒体自噬增强。
    BACKGROUND: Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated.
    METHODS: The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1).
    RESULTS: Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2.
    CONCLUSIONS: Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癌症相关性疲劳(CRF)显著影响癌症患者的生活质量。本研究调查了参芪扶正注射液(SFI)在治疗CRF中的治疗潜力,专注于其在骨骼肌中的机械作用。我们利用CRF小鼠模型来检查SFI对身体耐力的影响,监测活动水平,游泳时间和休息时间。使用等量异位标签和液相色谱-串联质谱法进行腓肠肌的蛋白质组学分析以绘制SFI处理后的肌肉蛋白质组变化。通过ATP生物发光测定法评估骨骼肌中的线粒体功能。此外,通过蛋白质印迹法探讨了缺氧诱导因子1亚基α(HIF-1α)信号通路在介导SFI效应中的调节作用。在CRF诱导的C2C12成肌细胞中,我们评估了细胞活力(CCK-8测定),细胞凋亡(流式细胞术)和线粒体自噬(电子显微镜)。这项研究还采用了下拉法,荧光素酶和染色质免疫沉淀试验,以阐明SFI作用的分子机制,特别关注PINK1通过HIF-1α结合在PINK1启动子区域的转录调节。我们的研究结果表明,SFI增强了身体活动能力,减轻疲劳症状,并通过减轻线粒体损伤和增强抗氧化反应对骨骼肌发挥保护作用。SFI促进细胞活力并诱导线粒体自噬,同时减少细胞凋亡,主要通过HIF-1α的调制,PINK1和p62蛋白。这些结果强调了SFI在增强线粒体自噬方面的功效,从而为改善CRF提供了一种有希望的方法。该研究不仅深入了解SFI的潜在治疗机制,而且为进一步探索SFI干预措施在CRF管理中的应用奠定了基础。
    Cancer-related fatigue (CRF) significantly impacts the quality of life of cancer patients. This study investigates the therapeutic potential of Shenqi Fuzheng injection (SFI) in managing CRF, focusing on its mechanistic action in skeletal muscle. We utilized a CRF mouse model to examine the effects of SFI on physical endurance, monitoring activity levels, swimming times and rest periods. Proteomic analysis of the gastrocnemius muscle was performed using isobaric tags and liquid chromatography-tandem mass spectrometry to map the muscle proteome changes post-SFI treatment. Mitochondrial function in skeletal muscle was assessed via ATP bioluminescence assay. Furthermore, the regulatory role of the hypoxia inducible factor 1 subunit alpha (HIF-1α) signalling pathway in mediating SFI\'s effects was explored through western blotting. In CRF-induced C2C12 myoblasts, we evaluated cell viability (CCK-8 assay), apoptosis (flow cytometry) and mitophagy (electron microscopy). The study also employed pulldown, luciferase and chromatin immunoprecipitation assays to elucidate the molecular mechanisms underlying SFI\'s action, particularly focusing on the transcriptional regulation of PINK1 through HIF-1α binding at the PINK1 promoter region. Our findings reveal that SFI enhances physical mobility, reduces fatigue symptoms and exerts protective effects on skeletal muscles by mitigating mitochondrial damage and augmenting antioxidative responses. SFI promotes cell viability and induces mitophagy while decreasing apoptosis, primarily through the modulation of HIF-1α, PINK1 and p62 proteins. These results underscore SFI\'s efficacy in enhancing mitochondrial autophagy, thereby offering a promising approach for ameliorating CRF. The study not only provides insight into SFI\'s potential therapeutic mechanisms but also establishes a foundation for further exploration of SFI interventions in CRF management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过自噬(mitophagy)选择性降解受损的线粒体被认为在细胞稳态中起重要作用。然而,对细胞生理学的分子机制和线粒体自噬对线粒体质量控制的要求知之甚少。这里,我们证明,原代人体细胞维持由线粒体超氧化物信号启动的高活性基底线粒体自噬。发现线粒体自噬是由PINK1/Parkin依赖性途径介导的,涉及p62作为选择性自噬受体(SAR)。重要的是,该途径在诱导细胞衰老和自然衰老的细胞中被抑制,导致有丝分裂的强大关闭。抑制增殖细胞中的线粒体自噬足以触发衰老程序,而线粒体自噬的重新激活对于NAD前体或雷帕霉素的抗衰老作用是必要的。此外,通过靶向p62的小分子重新激活线粒体自噬拯救了细胞衰老的标志物,将线粒体质量控制确立为抗衰老干预的有希望的目标。
    Selective degradation of damaged mitochondria by autophagy (mitophagy) is proposed to play an important role in cellular homeostasis. However, the molecular mechanisms and the requirement of mitochondrial quality control by mitophagy for cellular physiology are poorly understood. Here, we demonstrated that primary human cells maintain highly active basal mitophagy initiated by mitochondrial superoxide signaling. Mitophagy was found to be mediated by PINK1/Parkin-dependent pathway involving p62 as a selective autophagy receptor (SAR). Importantly, this pathway was suppressed upon the induction of cellular senescence and in naturally aged cells, leading to a robust shutdown of mitophagy. Inhibition of mitophagy in proliferating cells was sufficient to trigger the senescence program, while reactivation of mitophagy was necessary for the anti-senescence effects of NAD precursors or rapamycin. Furthermore, reactivation of mitophagy by a p62-targeting small molecule rescued markers of cellular aging, which establishes mitochondrial quality control as a promising target for anti-aging interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丝氨酸/苏氨酸激酶,PINK1和E3泛素连接酶,PRKN/Parkin促进LC3依赖的自噬体包裹和功能失调的线粒体的溶酶体清除,这种通路的缺陷导致了许多心脏代谢和神经系统疾病的发病机制。尽管最近发现动态肌动蛋白重塑在调控线粒体自噬的时空控制中起重要作用,机制尚不清楚。我们最近发现RhoGAP,ARHGAP26/GRAF1是一种PRKN结合蛋白,可迅速募集到受损的线粒体中,在PINK1磷酸化后,它通过调节线粒体相关的肌动蛋白重塑和促进PRKN-LC3相互作用来协调吞噬团的捕获。由于PINK1依赖性位点上的ARHGAP26磷酸化在人类心力衰竭中失调,而小鼠心脏中的ARHGAP26耗竭会减弱线粒体清除并减弱对压力的代偿代谢适应,这种酶可能是治疗与线粒体功能障碍相关的许多疾病的一个可处理的靶标。
    The serine/threonine kinase, PINK1, and the E3 ubiquitin ligase, PRKN/Parkin facilitate LC3-dependent autophagosomal encasement and lysosomal clearance of dysfunctional mitochondria, and defects in this pathway contribute to the pathogenesis of numerous cardiometabolic and neurological diseases. Although dynamic actin remodeling has recently been shown to play an important role in governing spatiotemporal control of mitophagy, the mechanisms remain unclear. We recently found that the RhoGAP, ARHGAP26/GRAF1 is a PRKN-binding protein that is rapidly recruited to damaged mitochondria where upon phosphorylation by PINK1 it serves to coordinate phagophore capture by regulating mitochondrial-associated actin remodeling and by facilitating PRKN-LC3 interactions. Because ARHGAP26 phosphorylation on PINK1-dependent sites is dysregulated in human heart failure and ARHGAP26 depletion in mouse hearts blunts mitochondrial clearance and attenuates compensatory metabolic adaptations to stress, this enzyme may be a tractable target to treat the many diseases associated with mitochondrial dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    帕金森病(PD)是最常见的进行性神经退行性运动障碍,是黑质致密质中多巴胺能神经元选择性丢失的结果。Pink1和Parkin是在线粒体质量控制中共同发挥作用的蛋白质,当它们携带功能丧失突变时,会导致家族性PD。虽然许多研究集中在PD的中枢神经系统改变上,外周对PD发病机制的贡献越来越受到重视.我们报道了Pink1/Parkin调节大鼠外周血单核细胞(PBMC)的糖酵解和线粒体氧化代谢。Pink1/Parkin缺乏症诱导循环淋巴细胞群的变化,即增加CD4+T细胞和减少CD8+T细胞和B细胞。Pink1/Parkin的缺失导致血液中血小板计数升高和血小板-T细胞聚集增加。血小板-淋巴细胞聚集体与血栓形成风险增加有关,静脉血栓形成是导致PD患者猝死的原因,提示靶向外周Pink1/Parkin通路具有治疗潜力。
    Parkinson\'s disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk, and venous thrombosis is a cause of sudden death in PD, suggesting targeting the Pink1/Parkin pathway in the periphery has therapeutic potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    术后认知功能障碍(POCD)是老年手术患者常见的并发症,严重影响他们的生活质量。右美托咪定(Dex),麻醉剂,在减轻POCD方面表现出了希望,但其潜在机制仍不清楚。本研究旨在探讨Dex如何通过靶向PINK1介导的线粒体自噬通路改善老年大鼠POCD,减少caspase-1/11-GSDMD诱导的海马神经元焦亡。转录组测序在Dex处理的POCD大鼠海马组织中鉴定了300个富含线粒体自噬途径的差异表达基因,以Pink1为关键候选人。在POCD大鼠模型中,Dex治疗上调海马PINK1表达。使用H19-7大鼠海马神经元的体外实验表明,Dex通过上调PINK1增强线粒体自噬并抑制神经元的焦亡。进一步的机制验证表明Dex激活PINK1介导的线粒体自噬,抑制caspase-1/11-GSDMD诱导的神经元焦亡。体内实验证实Dex能降低caspase-1/11-GSDMD依赖的海马神经元焦亡并改善老年大鼠术后认知功能。右美托咪定通过上调PINK1增强线粒体自噬改善老年大鼠术后认知功能障碍,缓解caspase-1/11-GSDMD诱导的神经元焦亡。
    Postoperative cognitive dysfunction (POCD) is a common complication in elderly surgical patients, significantly affecting their quality of life. Dexmedetomidine (Dex), an anesthetic, has shown promise in alleviating POCD, but its underlying mechanism remains unclear. This study aims to explore how Dex improves POCD in aged rats by targeting the PINK1-mediated mitochondrial autophagy pathway, reducing caspase-1/11-GSDMD-induced hippocampal neuronal pyroptosis. Transcriptome sequencing identified 300 differentially expressed genes enriched in the mitochondrial autophagy pathway in Dex-treated POCD rat hippocampal tissue, with Pink1 as a key candidate. In a POCD rat model, Dex treatment upregulated hippocampal PINK1 expression. In vitro experiments using H19-7 rat hippocampal neurons revealed that Dex enhanced mitochondrial autophagy and suppressed neuronal pyroptosis by upregulating PINK1. Further mechanistic validation demonstrated that Dex activated PINK1-mediated mitochondrial autophagy, inhibiting caspase-1/11-GSDMD-induced neuronal pyroptosis. In vivo experiments confirmed Dex\'s ability to reduce caspase-1/11-GSDMD-dependent hippocampal neuronal pyroptosis and improve postoperative cognitive function in aged rats. Dexmedetomidine improves postoperative cognitive dysfunction in elderly rats by enhancing mitochondrial autophagy via PINK1 upregulation, mitigating caspase-1/11-GSDMD-induced neuronal pyroptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自噬/线粒体自噬失调是缺血性心脏损伤的主要原因之一。糖原合成酶激酶3α(GSK-3α)已被证明在心脏病的病理生理学中起着至关重要的作用。然而,GSK-3α在心脏线粒体自噬中的确切作用尚不清楚。在这里,我们通过在急性缺氧条件下使用AC16人心肌细胞研究了GSK-3α在心脏线粒体自噬中的作用。我们观察到,缺氧后AC16心肌细胞中GSK-3α功能的获得深刻诱导了线粒体自噬。此外,GSK-3α过表达导致心肌细胞中ROS生成增加和线粒体功能障碍,伴随着缺氧下mt-mKeima强度增加的线粒体自噬增强。机械上,我们发现GSK-3α通过上调BNIP3促进线粒体自噬,这是由GSK-3α介导的缺氧后心肌细胞中HIF-1α和FOXO3a表达增加引起的。此外,GSK-3α显示与BNIP3的物理相互作用,在缺氧下观察到抑制PINK1和Parkin对线粒体的募集。一起来看,我们在人心肌细胞中发现了一种新的线粒体自噬机制。GSK-3α促进线粒体功能障碍并调节FOXO3a介导的BNIP3在心肌细胞中的过表达以促进缺氧后的线粒体自噬。GSK-3α和BNIP3之间的相互作用表明GSK-3α在BNIP3募集到线粒体膜中的作用,在线粒体膜中它增强了应激心肌细胞中的线粒体自噬,而与PINK1/Parkin无关。
    Dysregulated autophagy/mitophagy is one of the major causes of cardiac injury in ischemic conditions. Glycogen synthase kinase-3alpha (GSK-3α) has been shown to play a crucial role in the pathophysiology of cardiac diseases. However, the precise role of GSK-3α in cardiac mitophagy remains unknown. Herein, we investigated the role of GSK-3α in cardiac mitophagy by employing AC16 human cardiomyocytes under the condition of acute hypoxia. We observed that the gain-of-GSK-3α function profoundly induced mitophagy in the AC16 cardiomyocytes post-hypoxia. Moreover, GSK-3α overexpression led to increased ROS generation and mitochondrial dysfunction in cardiomyocytes, accompanied by enhanced mitophagy displayed by increased mt-mKeima intensity under hypoxia. Mechanistically, we identified that GSK-3α promotes mitophagy through upregulation of BNIP3, caused by GSK-3α-mediated increase in expression of HIF-1α and FOXO3a in cardiomyocytes post-hypoxia. Moreover, GSK-3α displayed a physical interaction with BNIP3 and, inhibited PINK1 and Parkin recruitment to mitochondria was observed specifically under hypoxia. Taken together, we identified a novel mechanism of mitophagy in human cardiomyocytes. GSK-3α promotes mitochondrial dysfunction and regulates FOXO3a -mediated BNIP3 overexpression in cardiomyocytes to facilitate mitophagy following hypoxia. An interaction between GSK-3α and BNIP3 suggests a role of GSK-3α in BNIP3 recruitment to the mitochondrial membrane where it enhances mitophagy in stressed cardiomyocytes independent of the PINK1/Parkin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    选择性去除功能失调的线粒体,一个叫做线粒体自噬的过程,对细胞健康至关重要,损伤与衰老有关,帕金森病,和其他神经退行性疾病。中枢线粒体自噬途径由泛素(Ub)激酶PINK1与E3Ub连接酶PRKN/Parkin协调。磷酸化Ub(p-S65-Ub)修饰受损的线粒体结构域通过自噬系统介导其消除。因此,p-S65-Ub已经作为具有显著疾病相关性的线粒体损伤的高度特异性和定量标记物出现。现有的p-S65-Ub抗体已被成功地用作一系列应用的研究工具,包括蛋白质印迹,免疫细胞化学,免疫组织化学,和酶联免疫吸附测定。然而,在没有外源胁迫的情况下,p-S65-Ub的生理水平非常低,因此很难检测,需要可靠和超灵敏的方法。在这里,我们产生并表征了一组新的重组体,兔单克隆p-S65-Ub抗体在某些应用中具有高特异性和亲和力,允许该领域更好地了解PINK1-PRKN信号传导的分子机制和疾病相关。这些抗体还可以作为新的诊断或预后工具来监测各种临床和病理标本中的线粒体损伤。缩写:AD:阿尔茨海默病;CCCP:羰基氰化物3-氯苯腙;ELISA:酶联免疫吸附测定;HEK293E细胞:人胚胎肾E细胞;ICC:免疫细胞化学;IHC:免疫组织化学:KO:敲除;LoB:空白极限;LoD:检测极限;LoQ:定量极限;MEF:小鼠胚胎BMBP-NPC-65。非磷酸化UMSOF:NSD-65
    The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号