PDZ Domains

PDZ 域
  • 文章类型: Journal Article
    蛋白质-配体复合物的结合亲和力测定是药物设计的基石。现有技术受到冗长和昂贵的工艺的限制。基于我们最近推出的利用光化学诱导动态核极化(photo-CIDNP)NMR的新型筛选方法,我们提供了使用0.1mg蛋白质在5-15分钟内确定结合亲和力的方法学框架。对于与PDZ结构域结合的肽和与蛋白质PIN1结合的片段配体的亲和常数,证明了我们方法的准确性。该方法还可以扩展到在竞争结合实验中测量非光CIDNP可极化配体的亲和力。最后,我们证明了基于光CIDNP的NMR片段筛选中的配体还原信号与已建立的饱和转移差异(STD)NMR之间的强相关性。因此,我们的方法测量蛋白质-配体亲和力在微-毫摩尔范围内只有几分钟,并告知在单扫描实验结合表位,为早期药物发现方法开辟了新的途径。
    The binding affinity determination of protein-ligand complexes is a cornerstone of drug design. State-of-the-art techniques are limited by lengthy and expensive processes. Building upon our recently introduced novel screening method utilizing photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR, we provide the methodological framework to determine binding affinities within 5-15 min using 0.1 mg of protein. The accuracy of our method is demonstrated for the affinity constants of peptides binding to a PDZ domain and fragment ligands binding to the protein PIN1. The method can also be extended to measure the affinity of nonphoto-CIDNP-polarizable ligands in competition binding experiments. Finally, we demonstrate a strong correlation between the ligand-reduced signals in photo-CIDNP-based NMR fragment screening and the well-established saturation transfer difference (STD) NMR. Thus, our methodology measures protein-ligand affinities in the micro- to millimolar range in only a few minutes and informs on the binding epitope in a single-scan experiment, opening new avenues for early stage drug discovery approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    PDZ(突触后密度蛋白-95[PSD-95]/Discs-large)结构域,作为识别模块普遍存在,由于其特异性识别具有共有基序(也称为PDZ结合基序[PBMs])的配体的能力,因此引起了极大的关注。PBM通常带有C末端羧酸盐作为识别柄,并且已被广泛表征,而内部配体不太为人所知。在这里,我们将短线性基序(SLiM)-EESTSFQGP-基于其对SHANK1PDZ结构域(SHANK1656-762以下称为SHANK1)的强结合亲和力而表征为内部PBM。使用乙酰化类似物Ac-EESTSFQGP-CONH2作为SHANK1与FAM-Ahx-EESTSFQGP-CONH2或典型的荧光团标记的C端PBM-GKAP-FITC-Ahx-EAQTRL-COOH相互作用的竞争者通过竞争荧光各向异性(FA)证明内部SLiM显示出可比的低微摩尔IC50。为了在分子水平上进一步了解内部配体相互作用,我们获得了Ac-EESTSFQGP-CONH2/SHANK1复合物的X射线共晶体结构,并将其与Ac-EAQTRL-COOH/SHANK1复合物进行了比较。晶体学研究表明,两种相互作用的SHANK1主链明显重叠。显示主要的结构差异是由柔性环引起的,柔性环重组以适应具有不同长度和末端基团的两个PBM。此外,显示Ac-EESTSFQGP-CONH2中的两个C端残基Gly和Pro不参与与靶蛋白的相互作用,暗示使用肽模拟方法对该序列进行进一步的截短和结构修饰可能是可行的。一起来看,SLiMAc-EESTSFQGP-CONH2具有作为靶向SHANK1的内部配体的潜力。
    The PDZ (Postsynaptic density protein-95[PSD-95]/Discs-large) domain, prevalent as a recognition module, has attracted significant attention given its ability to specifically recognize ligands with consensus motifs (also termed PDZ binding motifs [PBMs]). PBMs typically bear a C-terminal carboxylate as a recognition handle and have been extensively characterised, whilst internal ligands are less well known. Here we characterize a short linear motif (SLiM) - EESTSFQGP - as an internal PBM based on its strong binding affinity towards the SHANK1 PDZ domain (SHANK1656-762 hereafter referred to as SHANK1). Using the acetylated analogue Ac-EESTSFQGP-CONH2 as a competitor for the interaction of SHANK1 with FAM-Ahx-EESTSFQGP-CONH2 or a typical fluorophore-labelled C-terminal PBM - GKAP - FITC-Ahx-EAQTRL-COOH - the internal SLiM was demonstrated to show comparable low-micromolar IC50 by competition fluorescent anisotropy (FA). To gain further insight on the internal ligand interaction at the molecular level, we obtained the X-ray co-crystal structure of the Ac-EESTSFQGP-CONH2/SHANK1 complex and compared this to the Ac-EAQTRL-COOH/SHANK1 complex. The crystallographic studies reveal that the SHANK1 backbones for the two interactions overlap significantly. The main structural differences were shown to result from the flexible loops which reorganise to accommodate the two PBMs with distinct lengths and terminal groups. In addition, the two C-terminal residues Gly and Pro in Ac-EESTSFQGP-CONH2 were shown not to participate in interaction with the target protein, implying further truncation and structural modification using peptidomimetic approaches on this sequence may be feasible. Taken together, the SLiM Ac-EESTSFQGP-CONH2 holds potential as an internal ligand for targeting SHANK1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由SARS-CoV-2引起的COVID-19大流行突显了迫切需要创新的抗病毒策略来对抗病毒感染。尽管总体努力的很大一部分是针对Spike蛋白,以创建有效的全球疫苗接种策略,其他蛋白质也已被检查和鉴定为可能的治疗靶标。其中,虽然最初被低估了,有SARS-CoV-2E蛋白,由于其在病毒出芽中的作用,因此被证明是病毒发病机理的关键因素,组装和传播。E蛋白的C端含有PDZ结合基序(PBM),该基序在SARS-CoV-2毒力中起关键作用,因为它被人紧密连接蛋白ZO-1的PDZ2结构域识别和结合。ZO-1的PDZ2结构域与SARS-CoV-2E蛋白的C末端部分之间的结合已被广泛表征。我们的结果促使我们开发一种可能的辅助治疗策略,旨在减缓或抑制病毒介导的发病机理。这种创新在于设计和合成外部PDZ2-ZO1官能化的基于PLGA的纳米颗粒,以用作细胞内诱饵。与传统策略相反,这种创新方法旨在利用E蛋白-PDZ2相互作用来防止病毒组装和复制.事实上,PDZ2结构域与聚合物纳米颗粒的结合增加了对E蛋白的亲和力,有效地产生了一种“分子海绵”,能够在受感染细胞的细胞内环境中隔离E蛋白。我们对选定细胞模型的体外研究,表明这些纳米器件显著降低SARS-CoV-2介导的毒力,强调利用病毒-宿主相互作用对治疗益处的重要性。
    The COVID-19 pandemic caused by SARS-CoV-2 has highlighted the urgent need for innovative antiviral strategies to fight viral infections. Although a substantial part of the overall effort has been directed at the Spike protein to create an effective global vaccination strategy, other proteins have also been examined and identified as possible therapeutic targets. Among them, although initially underestimated, there is the SARS-CoV-2 E-protein, which turned out to be a key factor in viral pathogenesis due to its role in virus budding, assembly and spreading. The C-terminus of E-protein contains a PDZ-binding motif (PBM) that plays a key role in SARS-CoV-2 virulence as it is recognized and bound by the PDZ2 domain of the human tight junction protein ZO-1. The binding between the PDZ2 domain of ZO-1 and the C-terminal portion of SARS-CoV-2 E-protein has been extensively characterized. Our results prompted us to develop a possible adjuvant therapeutic strategy aimed at slowing down or inhibiting virus-mediated pathogenesis. Such innovation consists in the design and synthesis of externally PDZ2-ZO1 functionalized PLGA-based nanoparticles to be used as intracellular decoy. Contrary to conventional strategies, this innovative approach aims to capitalize on the E protein-PDZ2 interaction to prevent virus assembly and replication. In fact, the conjugation of the PDZ2 domain to polymeric nanoparticles increases the affinity toward the E protein effectively creating a \"molecular sponge\" able to sequester E proteins within the intracellular environment of infected cells. Our in vitro studies on selected cellular models, show that these nanodevices significantly reduce SARS-CoV-2-mediated virulence, emphasizing the importance of exploiting viral-host interactions for therapeutic benefit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体丝氨酸蛋白酶HtrA2是大肠杆菌Deg蛋白的人类同源物,具有伴侣和蛋白水解作用。HtrA2通过其降解凋亡抑制蛋白(IAP)的能力参与凋亡调节,以及作为细胞蛋白质质量控制机制的一部分的细胞维护,通过防止聚集蛋白质可能的毒性积累。在这项研究中,我们使用先进的溶液NMR光谱方法结合生物物理表征和生化测定来阐明底物识别PDZ域的关键作用。该结构域通过触发涉及蛋白酶结构域的调节环的复杂变构网络来调节HtrA2的蛋白酶活性。我们进一步表明,二价金属离子可以积极和消极地调节HtrA2的活性,从而在凋亡途径内形成HtrA2调节的完善模型。
    The mitochondrial serine protease HtrA2 is a human homolog of the Escherichia coli Deg-proteins exhibiting chaperone and proteolytic roles. HtrA2 is involved in both apoptotic regulation via its ability to degrade inhibitor-of-apoptosis proteins (IAPs), as well as in cellular maintenance as part of the cellular protein quality control machinery, by preventing the possible toxic accumulation of aggregated proteins. In this study, we use advanced solution NMR spectroscopy methods combined with biophysical characterization and biochemical assays to elucidate the crucial role of the substrate recognizing PDZ domain. This domain regulates the protease activity of HtrA2 by triggering an intricate allosteric network involving the regulatory loops of the protease domain. We further show that divalent metal ions can both positively and negatively modulate the activity of HtrA2, leading to a refined model of HtrA2 regulation within the apoptotic pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在人类基因组中有超过270个独特的现象,肽识别PDZ结构域在调节极化中起着核心作用,信令,和贩运途径。PDZ结构域的突变会导致癌症和囊性纤维化等疾病,使PDZ结构域成为治疗干预的有吸引力的靶标。D-肽抑制剂提供独特的优势作为治疗,包括增加的代谢稳定性和低免疫原性。这里,我们介绍DexDesign,一种基于OSPREY的新算法,用于计算设计从头D肽抑制剂。DexDesign利用了三种广泛适用于计算蛋白质设计的新技术:最小柔性集,基于K*的突变扫描,和反丙氨酸扫描。我们应用这些技术和DexDesign来产生两个生物医学上重要的PDZ结构域靶标的新型D肽抑制剂:CAL和MAST2。我们介绍了一个用于分析从头肽的框架-沿着复制/恢复轴进行评估-并将其应用于DexDesign生成的D肽。值得注意的是,我们产生的肽被预测比它们的靶内源性配体更紧密地结合它们的靶,验证肽作为铅抑制剂的潜力。我们还在免费和开源的计算蛋白质设计软件OSPREY中提供了DexDesign的实现。
    With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets\' endogenous ligands, validating the peptides\' potential as lead inhibitors. We also provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Wnt平面细胞极性(Wnt-PCP)途径在发育和组织稳态期间建立细胞极性方面至关重要。发现该途径在许多病理条件下失调,包括癌症和自身免疫性疾病。Wnt-PCP途径中的中心事件是弱相似性鸟嘌呤核苷酸交换因子(WGEF)被衔接蛋白Dishevelled(Dvl)激活。Dishevelled2的PDZ结构域(Dvl2PDZ)通过从其自动抑制状态释放而结合并激活WGEF。然而,WGEF的实际Dvl2PDZ结合位点以及随后的GEF激活机制仍然难以捉摸。利用生化和分子动力学研究,我们表明,WGEF独特的“内部PDZ结合基序”(IPM)介导WGEF-Dvl2PDZ相互作用以激活GEF。IPM的P2,P0,P-2和P-3位置的残基在稳定WGEFpep-Dvl2PDZ相互作用中起重要作用。此外,模拟的Dvl2PDZ-WGEFIPM肽复合物的MD模拟表明WGEF-Dvl2PDZ相互作用可能不同于报道的Dvl2PDZ-IPM相互作用。此外,人Dvl2PDZ的apo结构显示与其IPM肽结合态不同的构象动力学,提示Dvl2PDZ-肽相互作用的诱导拟合机制。本研究为Dvl2诱导的WGEF激活提供了模型。
    The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique \"internal-PDZ binding motif\" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PDZ结构域是常规地结合靶蛋白的C末端或内部基序以通过调节蛋白复合物组装来控制细胞功能的模块结构域。几乎所有报道的PDZ-靶蛋白复合物的结构都依赖于片段或肽作为靶蛋白。没有结构上表征与PDZ复合的完整靶蛋白。在这项研究中,我们使用NMR光谱和其他生物化学和生物物理学工具来揭示与C激酶1(PICK1)相互作用的蛋白质的PDZ结构域与α7烟碱乙酰胆碱受体(α7nAChR)之间的结构耦合的见解。值得注意的是,α7nAChR和PICK1PDZ的胞内结构域在其偶联中表现出高度的可塑性。具体来说,α7nAChR的MA螺旋与位于PICK1PDZ的经典结合位点的残基相互作用,而柔性环也参与蛋白质-蛋白质相互作用。疏水和静电相互作用均介导偶联。总的来说,α7nAChR-PICK1复合物的结构揭示了一种非常规的PDZ结合模式,显着扩展了功能上重要的PDZ相互作用的库。
    PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近的研究结果表明,索洛,aRhoGEF,参与细胞机械应激反应。然而,通过Solo进行肌动蛋白细胞骨架重塑的机制尚不清楚。因此,这项研究旨在使用BioID鉴定Solo相互作用蛋白,一种近端依赖标记方法,并阐明了Solo功能的分子机制。我们将PDZ-RhoGEF(PRG)鉴定为Solo相互作用蛋白。PRG与Solo共同定位在细胞的基底区域,根据Solo本地化,并增强了Solo积累位点的肌动蛋白聚合。此外,Solo和PRG相互作用是肌动蛋白细胞骨架重塑所必需的。此外,纯化的Solo本身几乎没有或可以忽略不计的GEF活动,甚至GEF非活性突变体也通过相互作用直接激活了PRG的GEF活性。此外,Solo和PRG结合结构域的过表达,分别,响应于底物刚度,对肌动蛋白聚合和肌动蛋白应力纤维形成具有显性负效应。因此,Solo限制了PRG的定位,并与PRG协同调节肌动蛋白细胞骨架重塑,以响应周围的机械环境。
    Recent findings indicate that Solo, a RhoGEF, is involved in cellular mechanical stress responses. However, the mechanism of actin cytoskeletal remodeling via Solo remains unclear. Therefore, this study aimed to identify Solo-interacting proteins using the BioID, a proximal-dependent labeling method, and elucidate the molecular mechanisms of function of Solo. We identified PDZ-RhoGEF (PRG) as a Solo-interacting protein. PRG colocalized with Solo in the basal area of cells, depending on Solo localization, and enhanced actin polymerization at the Solo accumulation sites. Additionally, Solo and PRG interaction was necessary for actin cytoskeletal remodeling. Furthermore, the purified Solo itself had little or negligible GEF activity, even its GEF-inactive mutant directly activated the GEF activity of PRG through interaction. Moreover, overexpression of the Solo and PRG binding domains, respectively, had a dominant-negative effect on actin polymerization and actin stress fiber formation in response to substrate stiffness. Therefore, Solo restricts the localization of PRG and regulates actin cytoskeletal remodeling in synergy with PRG in response to the surrounding mechanical environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在寻找具有可能的工业应用的新的酶活性时,我们专注于那些微生物及其分子机制,使它们在环境中取得成功,特别是在蛋白水解活性及其在微生物成功持久性中的核心作用。将高活性丝氨酸蛋白酶用于工业应用是现代的需要。特别是对于洗涤剂的配方,蛋白质加工,从动物皮肤上脱毛。该报告提供了从青蛙car体中分离的荧光假单胞菌环境菌株产生的来自DegQ的高度蛋白水解片段的分离和鉴定。酶谱图表明,10kDa蛋白质主要产生该菌株的总蛋白水解活性,这是通过洗涤剂SDS增强。质谱分析显示,该蛋白质衍生了一对肽,显示属于DegQ的最高覆盖率的那些。有趣的是,这个小的蛋白质片段含有一个PDZ结构域,但没有明显的残基,表明它是一种蛋白酶。蛋白质模型分析表明,该片段对应于来自DegQ的主要PDZ结构域,其独特的序列和结构使其成为蛋白水解肽。这里呈现的结果表明,新的DegQ片段足以获得高蛋白酶活性,突出表明环境微生物的分析可以使新菌株或酶具有有用的生物技术特征。
    In the search of new enzymatic activities with a possible industrial application, we focused on those microorganisms and their molecular mechanisms that allow them to succeed in the environment, particularly in the proteolytic activity and its central role in the microorganisms\' successful permanence. The use of highly active serine proteases for industrial applications is a modern need, especially for the formulation of detergents, protein processing, and hair removal from animal skins. This report provides the isolation and identification of a highly proteolytic fragment derived from DegQ produced by a Pseudomonas fluorescens environmental strain isolated from a frog carcass. Zymograms demonstrate that a 10 kDa protein mainly generates the total proteolytic activity of this strain, which is enhanced by the detergent SDS. Mass spectroscopy analysis revealed that the protein derived a couple of peptides, the ones showing the highest coverage belonging to DegQ. Interestingly, this small protein fragment contains a PDZ domain but no obvious residues indicating that it is a protease. Protein model analysis shows that this fragment corresponds to the main PDZ domain from DegQ, and its unique sequence and structure render a proteolytic peptide. The results presented here indicate that a novel DegQ fragment is sufficient for obtaining high protease activity highlighting that the analysis of environmental microorganisms can render new strains or enzymes with helpful biotechnological characteristics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    LIM结构域激酶(LIMK)是肌动蛋白细胞骨架重塑的重要调节因子。这些蛋白激酶磷酸化肌动蛋白解聚因子cofilin以抑制丝切断,是RhoGTPase级联和肌动蛋白之间的关键节点。这两种哺乳动物的LIMK,LIMK1和LIMK2含有连续的LIM结构域和C末端激酶结构域上游的PDZ结构域。N端区域的作用尚未完全理解,并且PDZ结构域的功能仍然难以捉摸。这里,我们确定了LIMK2的PDZ结构域的2.0µ晶体结构,并揭示了以前在PDZ结构域中未观察到的特征,包括位于\'x-Φ-G-Φ'基序第二位置的面向核心的精氨酸残基,并且预期的肽结合裂缝是浅的且保守性差。我们发现远端延伸表面高度保守,当LIMK1在酵母中异位表达时,我们发现该表面的靶向诱变降低了生长,暗示LIMK活性增加。在酵母中表达的PDZ结构域LIMK1突变体被过度磷酸化并在体外显示出升高的活性。LIMK1和LIMK2中的该表面对于独立于活化环磷酸化的自动调节是关键的。总的来说,我们的研究证明了PDZ结构域对LIMK的自动调节的功能重要性。
    LIM domain kinases (LIMK) are important regulators of actin cytoskeletal remodeling. These protein kinases phosphorylate the actin depolymerizing factor cofilin to suppress filament severing, and are key nodes between Rho GTPase cascades and actin. The two mammalian LIMKs, LIMK1 and LIMK2, contain consecutive LIM domains and a PDZ domain upstream of the C-terminal kinase domain. The roles of the N-terminal regions are not fully understood, and the function of the PDZ domain remains elusive. Here, we determine the 2.0 Å crystal structure of the PDZ domain of LIMK2 and reveal features not previously observed in PDZ domains including a core-facing arginine residue located at the second position of the \'x-Φ-G-Φ\' motif, and that the expected peptide binding cleft is shallow and poorly conserved. We find a distal extended surface to be highly conserved, and when LIMK1 was ectopically expressed in yeast we find targeted mutagenesis of this surface decreases growth, implying increased LIMK activity. PDZ domain LIMK1 mutants expressed in yeast are hyperphosphorylated and show elevated activity in vitro. This surface in both LIMK1 and LIMK2 is critical for autoregulation independent of activation loop phosphorylation. Overall, our study demonstrates the functional importance of the PDZ domain to autoregulation of LIMKs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号