PBDE, polybrominated diphenyl ether

PBDE,多溴二苯醚
  • 文章类型: Journal Article
    有机磷酸酯(OPEs)广泛存在于各种环境介质中,并能破坏甲状腺内分泌信号通路。OPEs破坏甲状腺激素(TH)信号转导的机制尚不完全清楚。这里,我们提供了体内-体外-计算机证据,将OPEs作为环境THs竞争性地进入大脑,通过多种信号通路抑制斑马鱼的生长。OPEs可以结合转甲状腺素蛋白(TTR)和甲状腺素结合球蛋白,从而影响血液中TH的运输,并通过血脑屏障通过TTR到达大脑。当GH3细胞暴露于OPEs时,鉴于OPEs是TH的竞争性抑制剂,细胞增殖被显著抑制.甲酚二苯基磷酸酯被证明是TH的有效拮抗剂。慢性暴露于OPEs通过干扰甲状腺过氧化物酶和甲状腺球蛋白抑制TH合成,显著抑制斑马鱼的生长。基于基因表达调控与基因本体论和京都百科全书的基因和基因组数据库的比较,与甲状腺内分泌功能相关的信号通路,如受体-配体结合和调节激素水平,被确定为受到暴露于OPEs的影响。影响还与脂质的生物合成和代谢有关,和神经活性配体-受体相互作用。这些发现为OPEs破坏斑马鱼甲状腺通路的机制提供了全面的理解。
    Organophosphate esters (OPEs) are widespread in various environmental media, and can disrupt thyroid endocrine signaling pathways. Mechanisms by which OPEs disrupt thyroid hormone (TH) signal transduction are not fully understood. Here, we present in vivo-in vitro-in silico evidence establishing OPEs as environmental THs competitively entering the brain to inhibit growth of zebrafish via multiple signaling pathways. OPEs can bind to transthyretin (TTR) and thyroxine-binding globulin, thereby affecting the transport of TH in the blood, and to the brain by TTR through the blood-brain barrier. When GH3 cells were exposed to OPEs, cell proliferation was significantly inhibited given that OPEs are competitive inhibitors of TH. Cresyl diphenyl phosphate was shown to be an effective antagonist of TH. Chronic exposure to OPEs significantly inhibited the growth of zebrafish by interfering with thyroperoxidase and thyroglobulin to inhibit TH synthesis. Based on comparisons of modulations of gene expression with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, signaling pathways related to thyroid endocrine functions, such as receptor-ligand binding and regulation of hormone levels, were identified as being affected by exposure to OPEs. Effects were also associated with the biosynthesis and metabolism of lipids, and neuroactive ligand-receptor interactions. These findings provide a comprehensive understanding of the mechanisms by which OPEs disrupt thyroid pathways in zebrafish.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尿道下裂是阴茎尿道闭合的缺陷,在发达国家约有1/150的男性活产,使其成为全球最常见的先天性异常之一。令人震惊的是,近几十年来,尿道下裂的频率迅速增加,并且还在继续上升。本文回顾的最新研究表明,尿道下裂发生率的上升可能与我们对内分泌干扰化学物质(EDCs)的暴露增加直接相关。尤其是那些影响雌激素和雄激素信号的。了解内分泌干扰物和尿道下裂之间的机械联系需要毒理学家和发育生物学家来定义暴露和对阴茎发育的生物学影响。在这篇综述中,我们研究了毒理学的最新见解,关于正常阴茎发育的激素控制的发育和流行病学研究,并描述了影响这些途径导致尿道下裂的EDC暴露的理由和证据。这些领域的持续合作对于了解内分泌干扰化学物质对尿道下裂发病率增加的全面影响至关重要。
    Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号