PAS domain

PAS 域
  • 文章类型: Journal Article
    光氧电压(LOV)黄素蛋白通过感觉核心域中的结构重排将光信号转换为可变的信号输出,然后通过α-螺旋接头元件传递到融合的效应子结构域。Pseudomonadaceae的短LOV蛋白由LOV感觉核心和可变长度的N和C末端α螺旋组成,为研究变构激活的分子机制提供了一个简单的模型系统。在这里,我们报告了来自荧光假单胞菌的两种LOV蛋白的晶体结构-完全光适应状态的SBW25-LOV和黑暗状态的Pf5-LOV。在对假单胞菌科短LOV的比较分析中,结构显示了光诱导的核心结构域旋转以及N和C末端的近端A'α和Jα螺旋的张开,强调保守信号转导机制的证据。Pseudomonadaceae短LOV蛋白家族的另一个显着特征是它们高度可变的暗恢复,从几秒钟到几天不等。了解这种变异性对于调整基于LOV的光遗传学工具的信号传导行为至关重要。在37°C时,SBW25-LOV和Pf5-LOV的加合态寿命分别为1470min和3.6min,分别。为了研究黑暗恢复率的显着差异,我们针对溶剂通道进入发色团口袋的三个残基,在那里我们通过将SBW25-LOV的非保守氨基酸交换为Pf5-LOV,反之亦然,引入突变.所得突变体的黑暗恢复动力学,以及对晶体结构的MD模拟和溶剂腔计算表明溶剂可及性与加合物寿命之间存在相关性。
    Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A\'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缓慢失活是由人Ether-à-go-go-go相关基因1(hERG)编码的电压门控K通道的关键特性。hERG1通道失活通过细胞内N末端Per-Arnt-Sim(PAS)和C末端环核苷酸结合同源性(CNBh)结构域之间的相互作用来调节。PAS域是多部分的,包含球形结构域(gPAS;残基26-135)和N末端PAS帽,该帽进一步细分为初始非结构化的“尖端”(残基1-12)和两亲性α螺旋区(残基13-25)。尽管PAS-cap尖端长期以来一直被认为是缓慢失活的效应物,如何控制其在门控机械附近的位置尚未阐明。这里,我们显示了gPAS之间的疏水相互作用的三联体,PAS-capα-螺旋,和CNBh域需要支持hERG1中的缓慢失活。这种“疏水关系”的主要序列在哺乳动物ERG通道中高度保守,但显示出与快速失活Ether-à-go-go1(EAG1)通道的关键差异。结合序列分析,结构定向诱变,电生理学,和分子动力学(MD)模拟,我们证明,极性丝氨酸取代揭示了一种中间失活模式,该模式也被PAS-capα-螺旋的缺失所模拟。丝氨酸取代通道的MD模拟分析显示,疏水连接的残基之间的距离增加,细胞内门环的旋转,以及PAS-cap尖端从其靠近电压传感器域和沟道栅极的受体位点缩回。这些发现提供了令人信服的证据,表明疏水网络协调了细胞内门环的各个组成部分,并定位了PAS-cap尖端以控制hERG1失活门控。
    Slow deactivation is a critical property of voltage-gated K+ channels encoded by the human Ether-à-go-go-Related Gene 1 (hERG). hERG1 channel deactivation is modulated by interactions between intracellular N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBh) domains. The PAS domain is multipartite, comprising a globular domain (gPAS; residues 26-135) and an N-terminal PAS-cap that is further subdivided into an initial unstructured \"tip\" (residues 1-12) and an amphipathic α-helical region (residues 13-25). Although the PAS-cap tip has long been considered the effector of slow deactivation, how its position near the gating machinery is controlled has not been elucidated. Here, we show that a triad of hydrophobic interactions among the gPAS, PAS-cap α helix, and the CNBh domains is required to support slow deactivation in hERG1. The primary sequence of this \"hydrophobic nexus\" is highly conserved among mammalian ERG channels but shows key differences to fast-deactivating Ether-à-go-go 1 (EAG1) channels. Combining sequence analysis, structure-directed mutagenesis, electrophysiology, and molecular dynamics simulations, we demonstrate that polar serine substitutions uncover an intermediate deactivation mode that is also mimicked by deletion of the PAS-cap α helix. Molecular dynamics simulation analyses of the serine-substituted channels show an increase in distance among the residues of the hydrophobic nexus, a rotation of the intracellular gating ring, and a retraction of the PAS-cap tip from its receptor site near the voltage sensor domain and channel gate. These findings provide compelling evidence that the hydrophobic nexus coordinates the respective components of the intracellular gating ring and positions the PAS-cap tip to control hERG1 deactivation gating.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:众所周知,林肯链霉菌生产临床上重要的抗微生物剂林可霉素。近年来,林可霉素生物合成的合成和调控机制得到了深入的探索。然而,与初级代谢有关的调节尚未完全解决。
    结果:SLCG_7083蛋白在N端含有Per-Arnt-Sim(PAS)结构域,其同源蛋白在链霉菌中高度分布。SLCG_7083基因的失活表明SLCG_7083促进了葡萄糖的利用,减缓菌丝体生长并影响林肯S.lincolnensis的孢子形成。比较转录组分析进一步显示,SLCG_7083抑制8个参与孢子形成的基因,细胞分裂和脂质代谢,并激活参与碳代谢的两个基因。
    结论:SLCG_7083是一种含PAS结构域的调节子,对林氏沙门氏菌的形态发育和葡萄糖利用有影响。我们的结果首次揭示了SLCG_7083的调节功能,并为链霉菌中SLCG_7083样家族蛋白的转录作用提供了新的思路。
    BACKGROUND: Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed.
    RESULTS: SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism.
    CONCLUSIONS: SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:细胞分化过程在原核和真核生物中均受到高度调控。水生细菌,Caulobactercrescentus,在每个细胞周期中都经历了从能动的Swarm细胞到静止的柄细胞的程序化细胞分化。该关键事件在多个水平上被调节。双功能酶的激酶活性,请,仅限于启动导致细胞分化的分子信号级联的短暂时期。相反,PleC磷酸酶活性是菌毛形成和鞭毛旋转所必需的。我们表明PleC通过支架蛋白定位于鞭毛极,PodJ,已知其在体外抑制PleC激酶活性。无法结合PodJ的PleC突变体在体内具有增加的激酶活性,导致过早分化。我们提出了一个模型,在该模型中,PodJ对PleC的酶活性的调节有助于在Caulobacter细胞周期中细胞分化的稳健时机。
    OBJECTIVE: The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC\'s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物的碱性螺旋-环-螺旋-PER-ARNT-SIM(bHLH-PAS)转录因子家族具有感知和响应不同环境和生理线索的能力。这些蛋白质都有一个共同的结构框架,包含一个bHLH域,两个PAS域,和转录激活或抑制结构域。为了有效地发挥转录因子的作用,家庭成员必须形成二聚体,将bHLH片段聚集在一起以创建允许DNA反应元件结合的功能单元。bHLH-PAS家族的重要性通过参与许多重大人类疾病来强调,提供治疗干预的潜在途径。值得注意的是,在其PAS结构域内的配体结合腔的清楚鉴定使得能够开发靶向小分子。两个例子是Belzutifan,靶向缺氧诱导因子(HIF)-2α,还有Tapinarof,靶向芳烃受体(AHR),两者最近都获得了监管部门的批准。这里,我们专注于HIF亚家族。已经阐明了所有三种HIF-α蛋白的晶体结构,揭示它们的bHLH和串联PAS结构域被用来参与它们的二聚化伴侣芳香烃受体核转运蛋白(ARNT,也称为HIF-1β)。广泛的最新发现指出了这些蛋白质之间共有的变构调节机制,由此PAS-B结构域的小分子对HIF-α转录功能产生直接影响。随着我们对bHLH-PAS蛋白的结构和变构机制的理解不断推进,发现新的治疗药物的可能性变得越来越有希望。
    The mammalian family of basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factors possess the ability to sense and respond to diverse environmental and physiological cues. These proteins all share a common structural framework, comprising a bHLH domain, two PAS domains, and transcriptional activation or repression domain. To function effectively as transcription factors, members of the family must form dimers, bringing together bHLH segments to create a functional unit that allows for DNA response element binding. The significance of bHLH-PAS family is underscored by their involvement in many major human diseases, offering potential avenues for therapeutic intervention. Notably, the clear identification of ligand-binding cavities within their PAS domains enables the development of targeted small molecules. Two examples are Belzutifan, targeting hypoxia-inducible factor (HIF)-2α, and Tapinarof, targeting the aryl hydrocarbon receptor (AHR), both of which have gained regulatory approval recently. Here, we focus on the HIF subfamily. The crystal structures of all three HIF-α proteins have been elucidated, revealing their bHLH and tandem PAS domains are used to engage their dimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1β). A broad range of recent findings point to a shared allosteric modulation mechanism among these proteins, whereby small-molecules at the PAS-B domains exert direct influence over the HIF-α transcriptional functions. As our understanding of the architectural and allosteric mechanisms of bHLH-PAS proteins continues to advance, the possibility of discovering new therapeutic drugs becomes increasingly promising.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元PAS结构域蛋白2(NPAS2)是一种包含碱性螺旋-环-螺旋结构域(bHLH)和两个血红素结合位点的血红素蛋白,PAS-A和PAS-B域。该蛋白质充当吡啶核苷酸依赖性和气体响应性CO依赖性转录因子,并由其表达随昼夜节律波动的基因编码。NPAS2是分子时钟的核心齿轮,对代谢途径起调节作用,对哺乳动物中枢神经系统的功能很重要,并参与致癌作用以及正常的生物学功能和过程,如心血管功能和伤口愈合。我们回顾了有关NPAS2各个方面的科学文献,并在几个非常不同的研究和临床领域中构建了该基因/蛋白质。
    Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    芳基烃受体(AhR)是一种众所周知的异型生物传感器;此外,它被认为是一个有前途的药物靶标,因为它参与许多病理生理过程的调节。由于这些原因,对其配体激活的转录机制的研究已经刺激了二十多年的多项研究。在这篇综述中,我们强调了分子结构信息在理解信号传导机制的不同步骤中的关键作用。AhR胞质复合物的结构,包括hsp90伴侣蛋白和XAP2和p23共同伴侣,由于Cryo-EM实验,去年已经上市。AhR配体结合(PAS-B)结构域的结构长期以来一直难以捉摸;它已通过同源性建模进行了预测,基于已知的PAS系统,通过配体分子对接对其配体结合形式进行建模。虽然最近一些关于这个领域的结构信息已经变得可用,仍然需要相当大的努力来通过实验高分辨率研究确定AhR关键配体的结合几何形状。另一方面,AhR与ARNT蛋白的二聚体结构,与特定的DNA反应元件结合,通过X射线晶体学部分确定,并通过同源性建模完成。总的来说,目前在AhR机制上形成的主要蛋白质复合物的结构知识为确认和进一步研究所提出的AhR的配体激活的转录机制的主要步骤开辟了道路。
    The Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism. The architecture of the AhR cytosolic complex, encompassing the hsp90 chaperone protein and the XAP2 and p23 co-chaperones, has become available in the last year thanks to Cryo-EM experiments. The structure of the AhR ligand-binding (PAS-B) domain has remained elusive for a long time; it has been predicted by homology modelling, based on known PAS systems, and its ligand-bound forms were modelled through ligand molecular docking. Although very recently some structural information on this domain has become available, considerable efforts are still needed to determine the binding geometries of the AhR key ligands by experimental high-resolution studies. On the other hand, the dimeric structure of AhR with the ARNT protein, bound to the specific DNA responsive element, was partially determined by X-ray crystallography and it was completed by homology modelling. On the whole the current structural knowledge of the main protein complexes that form over the AhR mechanism opens the way to confirm and further investigate the main steps of the proposed ligand-activated transcription mechanism of the AhR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    镁是调节催化活性的重要二价阳离子。最近,我们已经描述了Mg2+通过PAS结构域的结合在中性pH7.5抑制了利什曼原虫含PAS结构域的PGK(LmPAS-PGK)中磷酸甘油酸激酶(PGK)的活性,但在酸性pH5.5时PGK活性被抑制.预期LmPAS-PGK的PAS结构域内的酸性残基在中性pH下结合辅因子Mg2离子,但是哪个或哪些特定的酸性残基负责Mg2+结合仍是未知的。为了识别残留物,我们利用PAS域中所有酸性(十二个Asp/Glu)残基的突变研究进行了合理的Mg2结合。通过用Ala取代Asp-4来消除pH7.5时的Mg2离子依赖性抑制,而其他酸性残基突变体(D16A,D22A,D24A,D29A,D43A,D44A,D60A,D63A,D77A,D87A,和E107A)与野生型蛋白相比显示出相似的特征。荧光光谱研究和等温滴定量热分析表明,Asp-4在没有PGK底物的情况下对Mg2结合至关重要。这些结果表明,野生型酶的调节(PAS)结构域中的Asp-4残基是中性pH下催化PGK结构域的Mg2依赖性抑制状态所必需的。
    Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK\'s substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一氧化氮(NO)调节大片动物生理学,包括伤口愈合,血管舒张,记忆形成,气味检测,性功能,以及对传染病的反应。主要的NO受体是可溶性鸟苷酸环化酶(sGC),150kDa的二聚体蛋白,通过亚铁血红素检测NO,导致构象发生巨大变化,并提高了GTP的cGMP产量。在人类中,sGC功能的丧失导致多种疾病状态,包括心血管疾病和癌症,是一类新型药物的目标,sGC刺激器,现在在临床使用。sGC是通过四个古老领域的融合而进化而来的,血红素一氧化氮/氧(H-NOX)域,a每ARNT-Sim(PAS)域,一个盘绕的线圈,和一个环化酶结构域,催化发生在两个环化酶结构域的界面。在动物中,主要的二聚体是α1β1异二聚体,通过β1亚基的基因复制形成α1亚基。PAS结构域提供了一个广泛的二聚体界面,在sGC激活过程中保持不变,充当核心锚。在PAS-PAS二聚体界面处形成的大裂口与卷曲螺旋的N末端紧密结合,保持这个区域的完整和不变,而其余的卷曲线圈重新包装,和其他域重新定位。该界面掩埋了单体表面的〜3000µ2,并包括高度保守的非极性和氢键残基。在这里,我们讨论了sGC的进化史,描述PAS域在sGC功能中的作用,探讨影响sGC功能的调控因素。
    Nitric oxide (NO) regulates large swaths of animal physiology including wound healing, vasodilation, memory formation, odor detection, sexual function, and response to infectious disease. The primary NO receptor is soluble guanyly/guanylate cyclase (sGC), a dimeric protein of ∼150 kDa that detects NO through a ferrous heme, leading to a large change in conformation and enhanced production of cGMP from GTP. In humans, loss of sGC function contributes to multiple disease states, including cardiovascular disease and cancer, and is the target of a new class of drugs, sGC stimulators, now in clinical use. sGC evolved through the fusion of four ancient domains, a heme nitric oxide / oxygen (H-NOX) domain, a Per-ARNT-Sim (PAS) domain, a coiled coil, and a cyclase domain, with catalysis occurring at the interface of the two cyclase domains. In animals, the predominant dimer is the α1β1 heterodimer, with the α1 subunit formed through gene duplication of the β1 subunit. The PAS domain provides an extensive dimer interface that remains unchanged during sGC activation, acting as a core anchor. A large cleft formed at the PAS-PAS dimer interface tightly binds the N-terminal end of the coiled coil, keeping this region intact and unchanged while the rest of the coiled coil repacks, and the other domains reposition. This interface buries ∼3000 Å2 of monomer surface and includes highly conserved apolar and hydrogen bonding residues. Herein, we discuss the evolutionary history of sGC, describe the role of PAS domains in sGC function, and explore the regulatory factors affecting sGC function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    PAS(Per-ARNT-Sim)结构域是在古细菌中发现的感觉蛋白调节模块,原核生物,和真核生物。组氨酸和丝氨酸/苏氨酸蛋白激酶,化学和光感受器,昼夜节律调节器,离子通道,磷酸二酯酶,和其他细胞反应调节因子在这些蛋白质中。Hik33是一种多功能的感觉组氨酸激酶,与蓝细菌对寒冷的反应有关,盐,高渗,和氧化应激。本研究研究了单个Hik33结构域在信号转导中的功能作用。开发了集胞藻Hik33缺失变体,其中跨膜结构域和/或PAS结构域的两个或一部分被缺失。在光照或黑暗中对突变菌株施加冷胁迫。研究结果表明,跨膜结构域控制温度响应,而PAS结构域可能以光依赖性方式参与下游基因表达的调控。
    The PAS (Per-ARNT-Sim) domain is a sensory protein regulatory module found in archaea, prokaryotes, and eukaryotes. Histidine and serine/threonine protein kinases, chemo- and photoreceptors, circadian rhythm regulators, ion channels, phosphodiesterases, and other cellular response regulators are among these proteins. Hik33 is a multifunctional sensory histidine kinase that is implicated in cyanobacterial responses to cold, salt, hyperosmotic, and oxidative stressors. The functional roles of individual Hik33 domains in signal transduction were investigated in this study. Synechocystis Hik33 deletion variants were developed, in which either both or a portion of the transmembrane domains and/or the PAS domain were deleted. Cold stress was applied to the mutant strains either under illumination or in the dark. The findings show that the transmembrane domains govern temperature responses, whereas PAS domain may be involved in regulation of downstream gene expression in light-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号