Origin of Life

生命起源
  • 文章类型: Journal Article
    在科学探索的无边无际的风景中,存在一个隐藏的,但很容易接近,维度不仅经常引起研究人员的兴趣和困惑,而且提供了关键。这个维度是手性的,描述对象的惯用性的属性。手性的影响遍及不同的研究领域,从弱电相互作用中的奇偶违反到诸如星系之类的超大宏观系统。在这篇评论文章中,我们将通过研究一些例子来深入研究科学探索中的手性力量,在不同的尺度上,展示其作为更好地了解我们世界的关键的作用。我们的目标是激励来自各个领域的研究人员寻求,在他们的研究中实施和利用手性。多走一英里可能比乍一看更有意义,特别是针对我们面临的当代科学技术挑战,对新功能材料的需求不断增加。本文是“庆祝皇家学会牛顿国际奖学金成立15周年”主题问题的一部分。
    In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue \'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship\'.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于生命起源时简单分子的存在,可以增强或侵蚀Formose反应的核心自催化循环。利用量子化学,我们计算了在核心循环中以及消耗反应物和中间体的反应的热力学和动力学,例如Cannizzaro的反应。我们发现通过醛歧化成羧酸和醇,Cannizzaro反应为各种反应提供了简单的催化剂。我们还发现,氨可以催化循环和坎尼扎罗反应,而硫化氢则不能;两者,然而,在潜在反应网中的隔离反应物和中间体中发挥作用。
    The core autocatalytic cycle of the formose reaction may be enhanced or eroded by the presence of simple molecules at life\'s origin. Utilizing quantum chemistry, we calculate the thermodynamics and kinetics of reactions both within the core cycle and those that deplete the reactants and intermediates, such as the Cannizzaro reaction. We find that via disproportionation of aldehydes into carboxylic acids and alcohols, the Cannizzaro reaction furnishes simple catalysts for a variety of reactions. We also find that ammonia can catalyze both in-cycle and Cannizzaro reactions while hydrogen sulfide does not; both, however, play a role in sequestering reactants and intermediates in the web of potential reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生命从非生命的出现,或生物发生,仍然是科学探究中的一个基本问题。在这篇文章中,我们通过利用地球环境的见解来调查生命起源的可能性(每个有利地点)。如果生命起源于地球,它的存在确实具有信息价值,尽管对随之而来的重要性的解释在很大程度上取决于先前的假设。通过采用贝叶斯框架,对于一个不可知论者来说,我们建立了地球上生物发生的潜在地点的数量和每个地点出现生命的概率之间的直接联系。我们的发现表明,对地球上生命起源的合适环境的可用性的限制可能会为生物发生的可能性和宇宙中生命的频率提供有价值的见解。
    The emergence of life from nonlife, or abiogenesis, remains a fundamental question in scientific inquiry. In this article, we investigate the probability of the origin of life (per conducive site) by leveraging insights from Earth\'s environments. If life originated endogenously on Earth, its existence is indeed endowed with informative value, although the interpretation of the attendant significance hinges critically upon prior assumptions. By adopting a Bayesian framework, for an agnostic prior, we establish a direct connection between the number of potential locations for abiogenesis on Earth and the probability of life\'s emergence per site. Our findings suggest that constraints on the availability of suitable environments for the origin(s) of life on Earth may offer valuable insights into the probability of abiogenesis and the frequency of life in the universe.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    谴责生命的起源仍然是科学中最深刻的谜团之一。几千年来,理论已经演变,然而问题仍然存在:生命是如何从无生命的物质中产生的?在其核心,对生命起源的研究提供了我们在宇宙中的位置和生命本身的本质的见解。通过深入研究导致生命出现的化学和地质过程,科学家对支配生命系统的基本原则有了更深入的了解。这些知识不仅扩展了我们的科学理解,而且对从天体生物学到合成生物学的领域也具有深远的影响。这项研究采用了多学科的方法,结合各种技术,从太空任务到湿实验室实验到理论建模。对第一个原生物分子形成的研究旨在探索支撑生命的复杂分子过程以及可能发生这些过程的地质背景。虽然实验室实验旨在模仿早期行星的过程,并非每个过程和样本都是可以实现的。为此,我们展示了使用分子建模技术来补充实验工作和外星任务。模拟使研究人员能够测试假设并探索在实验室中难以或不可能复制的场景,弥合我们在巨大的时间和空间尺度上理解益生元过程的差距。矿物,特别是层状结构,如粘土和水滑石,在生命的起源中扮演不同和关键的角色。它们浓缩有机物种,催化聚合反应(如肽形成),并为分子提供保护性环境。矿物质也被认为是原始的遗传物质。然而,他们可能缺乏长期信息复制的能力。相反,我们建议矿物可以作为环境循环现象中编码的信息的转录者,如潮汐或季节变化。我们认为,对生产的聚合物进行广泛的保护将使其固定,使其对任何进一步的功能无效。因此,为了产生功能性聚合物,它必须保持流动性和化学活性。此外,我们建议一种鉴定伪生物签名的途径,在同一矿物表面上聚合并因此通过过度保护而保留的聚合物。本帐户提供了对目前对层状矿物表面对生命起源和生物特征保存作用的理解的全面评估。它强调了矿物-有机相互作用的复杂性,并提出了原始生物分子出现的途径以及识别和解释潜在生物特征的方法。最终,探索生命起源的探索继续推动科学探索和创新,对存在的基本本质和我们在宇宙中的地位提供了深刻的见解。
    ConspectusThe origin of life remains one of the most profound mysteries in science. Over millennia, theories have evolved, yet the question persists: How did life emerge from inanimate matter? At its core, the study of life\'s origin offers insights into our place in the universe and the nature of life itself. By delving into the chemical and geological processes that led to life\'s emergence, scientists gain a deeper understanding of the fundamental principles that govern living systems. This knowledge not only expands our scientific understanding but also has profound implications for fields ranging from astrobiology to synthetic biology.This research employs a multidisciplinary approach, combining a diverse array of techniques, from space missions to wet laboratory experiments to theoretical modeling. Investigations into the formation of the first proto-biomolecules are tailored to explore both the complex molecular processes that underpin life and the geological contexts in which these processes may have occurred. While laboratory experiments are aimed at mimicking the processes of early planets, not every process and sample is attainable. To this end, we demonstrate the use of molecular modeling techniques to complement experimental efforts and extraterrestrial missions. The simulations enable researchers to test hypotheses and explore scenarios that are difficult or impossible to replicate in the laboratory, bridging gaps in our understanding of prebiotic processes across vast time and space scales.Minerals, particularly layered structures like clays and hydrotalcites, play diverse and pivotal roles in the origin of life. They concentrate organic species, catalyze polymerization reactions (such as peptide formation), and provide protective environments for the molecules. Minerals have also been suggested to have acted as primitive genetic materials. Nevertheless, they may lack the ability for long-term information replication. Instead, we suggest that minerals may act as transcribers of information encoded in environmental cyclic phenomena, such as tidal or seasonal changes. We argue that extensive protection of the produced polymer will immobilize it, making it inactive for any further function. Therefore, in order to generate a functional polymer, it is essential that it remains mobile and chemically active. Furthermore, we suggest a route to the identification of pseudobiosignatures, a polymer that was polymerized on the same mineral surface and consequently retained through overprotection.This Account presents a comprehensive evaluation of the current understanding of the role of layered mineral surfaces on life\'s origin and biosignature preservation. It highlights the complexity of mineral-organic interactions and proposes pathways for proto-biomolecule emergence and methods for identifying and interpreting potential biosignatures. Ultimately, the quest to uncover the origin of life continues to drive scientific exploration and innovation, offering profound insights into the fundamental nature of existence and our place in the universe.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    特别有用的蛋白质序列是如何从生命起源的简单分子中产生的?这个看似大海捞针的问题与旧的蛋白质折叠问题非常相似,现在从统计物理学中可以知道解决方案。基于这样的逻辑,即起源必须只有在存在可操作的进化机制之后才能出现-选择表型,不是基因型-我们给出了一个观点,蛋白质及其折叠过程很可能是生命起源早期的主要驱动因素。
    How did specific useful protein sequences arise from simpler molecules at the origin of life? This seemingly needle-in-a-haystack problem has remarkably close resemblance to the old Protein Folding Problem, for which the solution is now known from statistical physics. Based on the logic that Origins must have come only after there was an operative evolution mechanism-which selects on phenotype, not genotype-we give a perspective that proteins and their folding processes are likely to have been the primary driver of the early stages of the origin of life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本文提出了发展生物能源生产系统的进化轨迹。描述了能源生产系统演化的六个主要阶段,从早期进化的黄铁矿拉动机制到最后的通用祖先(LUCA)到当代系统。我们将最后的纯化学实体(LPCE)定义为最后的完全非酶实体。LPCE可能有一些类似生命的特性,但是缺乏遗传信息载体,因此显示出比LUCA更大的不稳定性和环境依赖性。提出了一种用于分隔和细胞化的双泡模型,作为高效蛋白质合成和跨膜离子梯度的先决条件。文章发现,尽管LUCA主要是厌氧功能,那是一种非排他性的厌氧菌,硫占主导地位的代谢先于磷酸盐占主导地位。
    This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    谴责生命的化学构件的单一手性起源仍然是一个有趣的研究主题,即使经过数十年的实验和理论工作,提出了可能打破对称性并诱导手性扩增的过程,该术语可以定义为从前手性底物或外消旋混合物开始的对映体过量的增强或对映体之间的小不平衡。旨在了解这些分子的生前合理途径的研究通常忽略了手性问题,专注于这些反应的立体化学方向,通常在反应发现后进行。我们的工作探索了如何指导氨基酸和糖合成的立体化学结果以合理化生物同手性的起源。这两组分子中对映富集之间的机械互连提供了有关现代生物学中现存的惯用性的见解。在涉及生命构建块合成的五个单独的例子中,包括糖,RNA前体,氨基酸,和肽,动力学拆分是由手性源分子指导的外消旋分子对映体富集的关键方案。这些实例中的若干实例不仅涉及用于手性扩增的手段,而且涉及跨越一系列外消旋单体分子的对称破坏和手性转移。这些研究得出了几个重要的启示:一是,原始手性糖的动力学拆分,甘油醛,在许多不同的前生物看似合理的反应中起着关键作用;二,糖和氨基酸中同手性的出现本质上是交织在一起的,每个分子类别的生物手之间具有明显的协同作用;三,酶的同构性和现代代谢的起源故事指向网络中外消旋氨基酸的动力学分解,后来演变为包括复杂和完整的催化和共催化循环;四,对不能导致生物活性聚合物的异手性连接形成产物分子的偏好实际上可以是通往同手性聚合物链的路线的驱动力;和五个,复杂混合物中的对映富集不需要一次解决一个化合物,因为动力学分辨率会引起对称性破坏和手性转移,这可能会导致通用方案,而不是针对每个单独分子定制的特定情况。这种手性转移机制可能预示着现代生物学中使用的策略。我们的最新工作将单体对映富集的研究扩展到将这些分子连接到延伸的同手性链中,从而导致现代生物学的复杂聚合物。所有这些反应的中心主题是氨基酸或糖的外消旋混合物的动力学拆分在前生物似是而非的条件下实现对映富集的关键作用。这项工作揭示了对称破坏的重要趋势,手性转移,和手性扩增。外消旋混合物的动力学拆分成为益生元化学中手性扩增的通用解决方案,导致复杂生物分子和遗传聚合物的单手性。
    ConspectusThe origin of the single chirality of the chemical building blocks of life remains an intriguing topic of research, even after decades of experimental and theoretical work proposing processes that may break symmetry and induce chiral amplification, a term that may be defined as the enhancement of enantiomeric excess starting from prochiral substrates or from a racemic mixture or a small imbalance between enantiomers. Studies aimed at understanding prebiotically plausible pathways to these molecules have often neglected the issue of chirality, with a focus on the stereochemical direction of these reactions generally being pursued after reaction discovery. Our work has explored how the stereochemical outcome for the synthesis of amino acids and sugars might be guided to rationalize the origin of biological homochirality. The mechanistic interconnection between enantioenrichment in these two groups of molecules provides insights concerning the handedness extant in modern biology. In five separate examples involving the synthesis of life\'s building blocks, including sugars, RNA precursors, amino acids, and peptides, kinetic resolution emerges as a key protocol for enantioenrichment from racemic molecules directed by chiral source molecules. Several of these examples involve means not only for chiral amplification but also symmetry breaking and chirality transfer across a range of racemic monomer molecules. Several important implications emerge from these studies: one, kinetic resolution of the primordial chiral sugar, glyceraldehyde, plays a key role in a number of different prebiotically plausible reactions; two, the emergence of homochirality in sugars and amino acids is inherently intertwined, with clear synergy between the biological hand of each molecule class; three, the origin story for the homochirality of enzymes and modern metabolism points toward kinetic resolution of racemic amino acids in networks that later evolved to include sophisticated and complete catalytic and co-catalytic cycles; four, a preference for heterochiral ligation forming product molecules that cannot lead to biologically competent polymers can in fact be a driving force for a route to homochiral polymer chains; and five, enantioenrichment in complex mixtures need not be addressed one compound at a time, because kinetic resolution induces symmetry breaking and chirality transfer that may lead to general protocols rather than specific cases tailored to each individual molecule. Such chirality transfer mechanisms perhaps presage strategies utilized in modern biology.Our latest work extends the study of monomer enantioenrichment to the ligation of these molecules into the extended homochiral chains leading to the complex polymers of modern biology. A central theme in all of these reactions is the key role that kinetic resolution of a racemic mixture of amino acids or sugars plays in enabling enantioenrichment under prebiotically plausible conditions. This work has uncovered important trends in symmetry breaking, chirality transfer, and chiral amplification. Kinetic resolution of racemic mixtures emerges as a general solution for chiral amplification in prebiotic chemistry, leading to the single chirality of complex biological molecules and genetic polymers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硫代酰胺键是益生元化学中的重要中间体。在氰硫化物益生元化学中,它们是导致许多重要生物分子形成的途径中的关键中间体(例如,氨基酸)。它们也可以作为嘌呤和嘧啶前体,遗传分子中使用的两类杂环。尽管它们很重要,在益生元条件下由腈形成硫代酰胺键需要大量过量的硫化物或具有未知益生元来源的化合物。这里,我们描述了硫醇催化的由腈形成硫代酰胺键。我们证明了这些化合物中最简单的化合物的形成,硫代甲酰胺,在火花放电实验中很容易形成氰化氢,硫化物,和甲硫醇催化剂,表明早期地球上潜在的积累。最后,我们证明了硫代甲酰胺具有与早期地球上其他能量货币(例如焦磷酸酯和硫酯键)相当的吉布斯水解能(ΔGr○)。总的来说,我们的发现暗示硫代酰胺可能在早期地球上丰富,并在化学进化过程中发挥各种功能。
    Thioamide bonds are important intermediates in prebiotic chemistry. In cyanosulfidic prebiotic chemistry, they serve as crucial intermediates in the pathways that lead to the formation of many important biomolecules (e.g., amino acids). They can also serve as purine and pyrimidine precursors, the two classes of heterocycle employed in genetic molecules. Despite their importance, the formation of thioamide bonds from nitriles under prebiotic conditions has required large excesses of sulfide or compounds with unknown prebiotic sources. Here, we describe the thiol-catalyzed formation of thioamide bonds from nitriles. We show that the formation of the simplest of these compounds, thioformamide, forms readily in spark-discharge experiments from hydrogen cyanide, sulfide, and a methanethiol catalyst, suggesting potential accumulation on early Earth. Lastly, we demonstrate that thioformamide has a Gibbs energy of hydrolysis ( Δ G r ∘ ) comparable to other energy-currencies on early Earth such as pyrophosphate and thioester bonds. Overall, our findings imply that thioamides might have been abundant on early Earth and served a variety of functions during chemical evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    假孢子虫是与动物密切相关的单细胞真核生物的未开发群体。由于它们的系统发育位置,基因组内容,通过让人联想到一些动物胚胎的多核细胞发育,鱼热孢子虫的成员越来越被认为是研究动物起源的关键。我们深入研究鱼孢子孢子的现有知识,确定现有的差距并讨论它们的生命周期,基因组见解,发展,并有可能成为模型生物。我们还讨论了被低估的鱼鳞病多样性,基于新的环境数据分析。这篇综述将成为研究人员冒险研究鱼鳞病的重要资源。
    Ichthyosporea is an underexplored group of unicellular eukaryotes closely related to animals. Thanks to their phylogenetic position, genomic content, and development through a multinucleate coenocyte reminiscent of some animal embryos, the members of Ichthyosporea are being increasingly recognized as pivotal to the study of animal origins. We delve into the existing knowledge of Ichthyosporea, identify existing gaps and discuss their life cycles, genomic insights, development, and potential to be model organisms. We also discuss the underestimated diversity of ichthyosporeans, based on new environmental data analyses. This review will be an essential resource for researchers venturing into the study of ichthyosporeans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物体持续存在的能力,成长,进化和入侵环境似乎挑战物理定律。新兴的自治系统代表由处于动态动力学稳定性状态的通电组件组成的自催化循环,具有这些特性中的一些特性。这些简单的理论模型可以成长,可以转移,但需要启动才能出现并可能崩溃。此外,它们可以以符合达尔文行为的方式进行动力学选择,尽管他们缺乏改变的能力。这些系统的存在及其开放式增长潜力被提议构成非编码类型的可传播因素。因此,表观遗传因素的发生和选择可能先于遗传聚合物。这里解决了这些系统如何从非生物有机物表现出的多样性中产生的问题,有时与棘手的混合物有关,这实际上可用于提供引发剂。因此,达尔文对进化的描述可以合并,而不会在原始场景中出现严重的不连续性。因此,这样的理论将完全依赖于物理化学定律,从新兴的自治系统竞争和入侵空间维度的潜力开始,并沿着其他可用维度进一步发展,包括可变性和,可能,认知。
    The ability of living organisms to persist, grow, evolve and invade environments seemingly challenges physical laws. Emerging Autonomous Systems representing autocatalytic cycles constituted of energized components in a state of Dynamic Kinetic Stability feature some of these properties. These simple theoretical models can grow, can be transferred but need an initiation to emerge and can collapse. Moreover, they can undergo kinetic selection in a way consistent with Darwinian behaviour, though they lack the ability to undergo change. The mere existence of these systems and their open-ended growth potential are proposed to constitute a transmissible factor of a non-coded kind. The onset and selection of epigenetic factors may therefore have preceded that of genetic polymers. Here is addressed the question of how these systems may arise from the diversity exhibited by abiotic organic matter, sometimes associated with intractable mixtures, which may actually be useful in providing initiators. The Darwinian description of evolution may therefore be merged without critical discontinuity within an origin scenario. Accordingly, such a theory would rests solely on physicochemical laws beginning with the potential of emerging autonomous systems to compete and invade the space dimension, and to further develop along other available dimensions including variability and, possibly, cognition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号