Open ponds

  • 文章类型: Journal Article
    在全球减少二氧化碳排放的努力中,污染物降解的同时增强和化石燃料消耗的减少是微藻介导的废水处理的关键方面。明确了污染物处理过程中细菌和微藻的降解机理,以及监管生物脂质生产,可以提高过程的可持续性。本文介绍了微藻与细菌之间的协同和抑制关系。还综述了可以调节微藻生物脂质积累的不同刺激剂。描述了在实验室和开放池塘中利用微藻和细菌的废水处理技术,以概述其在处理含重金属废水中的应用。畜牧业废水,制药废水,和纺织染料废水。最后,总结了扩大生物质梯级利用和能源回收的主要要求,以促进废水生物处理的发展。
    In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding on-line key state indicators to easily monitor the process. To fulfil this objective, a pilot-scale high-rate pond for urban wastewater treatment was evaluated under highly variable conditions, i.e. during the start-up period. The system was started-up without seed of either bacterial or microalgal biomass. It took around 19 days to fully develop a microalgal community assimilating nutrients significantly. Slight increases in the biomass productivities in days 26-30 suggest that the minimum time for establishing a performant bacteria-microalgae consortium could be of around one month for non-inoculated systems. At this point, the process was fully functional, meeting the European discharge limits for protected areas. The results of the statistical analyses show that both the pH and the dissolved oxygen concentration represent accurately the biochemical processes taking place under the start-up of the process. Both pH and dissolved oxygen represented accurately also the performance of the high-rate algal pond, being affordable, easily-implemented, options for monitoring, control and optimization of industrial-scale processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Microalgal cultivation that takes advantage of solar energy is one of the most cost-effective systems for the biotechnological production of biofuels, and a range of high value products, including pharmaceuticals, fertilizers and feed. However, one of the main constraints for the cultivation of microalgae is the potential contamination with biological pollutants, such as bacteria, fungi, zooplankton or other undesirable microalgae. In closed bioreactors, the control of contamination requires the sterilization of the media, containers and all materials, which increases the cost of production, whereas open pond systems severely limits the number of species that can be cultivated under extreme environmental conditions to prevent contaminations. Here, we report the metabolic engineering of Chlamydomonas reinhardtii to use phosphite as its sole phosphorus source by expressing the ptxD gene from Pseudomonas stutzeri WM88, which encodes a phosphite oxidoreductase able to oxidize phosphite into phosphate using NAD as a cofactor. Engineered C. reinhardtii lines are capable of becoming the dominant species in a mixed culture when fertilized with phosphite as a sole phosphorus source. Our results represent a new platform for the production of microalgae, potentially useful for both closed photobioreactors and open pond systems without the need for using sterile conditions nor antibiotics or herbicides to prevent contamination with biological pollutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号