Nucleotide-binding Leucine-rich-repeat Receptors (NLRs)

  • 文章类型: Journal Article
    植物依赖于核苷酸结合,用于病原体识别的富含亮氨酸重复受体(NLR)。高度可变的NLR(hvNLR)显示出显着的种内多样性,而它们的低变异性旁系同源物(非hvNLR)在生态型之间是保守的。在人口层面,hvNLR提供了新的病原体识别特异性,但是等位基因多样性与基因组和表观基因组特征之间的关联尚未确定。我们对拟南芥Col-0中NLR的研究表明,hvNLR显示出更高的表达,较少的基因体胞嘧啶甲基化,与非hvNLR相比,更接近转座因子。hvNLR显示升高的同义和非同义核苷酸多样性,并且处于与突变概率增加相关的染色质状态。多样化选择保持hvNLR密码子子集的可变性,而纯化选择保持非hvNLR的保守性。如何建立和维护这些功能,它们是否有助于观察到的hvNLR的多样性是理解植物先天免疫受体进化的关键。
    Plants rely on Nucleotide-binding, Leucine-rich repeat Receptors (NLRs) for pathogen recognition. Highly variable NLRs (hvNLRs) show remarkable intraspecies diversity, while their low-variability paralogs (non-hvNLRs) are conserved between ecotypes. At a population level, hvNLRs provide new pathogen-recognition specificities, but the association between allelic diversity and genomic and epigenomic features has not been established. Our investigation of NLRs in Arabidopsis Col-0 has revealed that hvNLRs show higher expression, less gene body cytosine methylation, and closer proximity to transposable elements than non-hvNLRs. hvNLRs show elevated synonymous and nonsynonymous nucleotide diversity and are in chromatin states associated with an increased probability of mutation. Diversifying selection maintains variability at a subset of codons of hvNLRs, while purifying selection maintains conservation at non-hvNLRs. How these features are established and maintained, and whether they contribute to the observed diversity of hvNLRs is key to understanding the evolution of plant innate immune receptors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在他们的进化过程中,植物核苷酸结合型富含亮氨酸的重复序列受体(NLR)已经获得了广泛不同的非常规整合结构域,这增强了它们检测病原体效应物的能力.然而,驱动具有整合域的NLR(NLR-ID)进化的功能动力学仍然知之甚少.这里,我们重建了一个易于非常规域整合的NLR基因座的进化史,并通过实验检验了有关NLR-ID进化的假设.我们表明,水稻(Oryzasativa)NLRPias可以识别稻瘟病真菌病原体稻瘟病的效应子AVR-Pias。Pias由功能专用的NLR对组成,辅助Pias-1和传感器Pias-2,其与先前表征的NLR的Pia对等位基因:辅助RGA4和传感器RGA5。值得注意的是,Pias-2在与RGA5的重金属相关(HMA)结构域相似的位置携带C末端DUF761结构域。系统学分析表明,Pias-2/RGA5传感器NLR在Oryza属中经历了反复的基因组重组,导致多达六个序列发散域整合。具有不同功能的等位基因NLR已在不同水稻谱系中保持跨种,以检测序列不同的病原体效应子。相比之下,Pias-1在整个进化过程中都保留了其NLR辅助活性,并且能够与发散的传感器-NLRRGA5一起运行以响应AVR-Pia。这些结果表明,相反的选择力驱动了成对NLR的进化:通过平衡传感器NLR的选择来维持高度动态的域集成事件,与辅助NLR的免疫信号的纯化选择和功能保守形成鲜明对比。
    Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号