Nsp1

Nsp1
  • 文章类型: Journal Article
    严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染会导致宿主细胞中表观遗传修饰和染色质结构的广泛变化。最近的证据表明,SARS-CoV-2非结构蛋白1(nsp1)在驱动这些变化中起着重要作用。以前认为主要参与宿主翻译关闭和细胞mRNA降解,nsp1现已被证明是一种真正的多功能蛋白,可以在多个水平上影响宿主基因的表达。nsp1的功能是惊人的多样化,不仅包括细胞mRNA翻译和稳定性的下调,而且抑制了mRNA从细胞核的输出,抑制宿主免疫信号,and,最近,宿主基因表达的表观遗传调控。在这次审查中,我们首先总结了SARS-CoV-2引起的表观遗传修饰和染色质结构变化的现有知识。然后我们关注nsp1在表观遗传重编程中的作用,特别强调免疫相关基因的沉默。最后,基于SARS-CoV-2相互作用组研究的证据,我们讨论了nsp1表观遗传功能的潜在分子机制.
    Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 non-structural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为最重要的猪肠致病性冠状病毒之一,猪流行性腹泻病毒(PEDV)是引起乳猪致死性水样腹泻的急性和破坏性肠道疾病的病原体。研究PEDV的最新进展揭示了许多关于其流行和遗传进化的有趣发现。快速诊断,抑制宿主基因表达,和抑制宿主先天免疫系统。由于PEDV基因组的持续突变,病毒从先天免疫防御和混合感染与其他冠状病毒,病毒的传播越来越广泛和快速,这使得更有必要预防野生型PEDV变体引起的感染。还报道了PEDVnsp1是必需的毒力决定子,并且通过结构和生化分析对抑制宿主基因表达至关重要。PEDVnsp1对宿主蛋白合成的抑制作用可能有助于调节宿主细胞增殖和免疫逃避相关的生物学功能。在这次审查中,我们严格评估了最近关于PEDV这些方面的研究,并评估了理解PEDV蛋白在调节宿主先天免疫应答和病毒毒力方面的功能的前景。
    As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Myc是肿瘤启动的主要驱动因素,programming,和维护。Myc蛋白水平的上调而不是新形态特性的获得似乎是大多数Myc驱动的癌症的基础。控制Myc表达的细胞机制仍未完全定义。在这项研究中,我们证明核糖体相关质量控制(RQC)在维持Myc蛋白水平方面起着关键作用.核糖体在cMyc的N端部分的合成过程中失速,产生异常的cMyc物种,并需要部署早期的RQC因子ZNF598来处理翻译应激并恢复cMyc翻译。ZNF598在人胶质母细胞瘤(GBM)中表达上调,其表达与cMyc呈正相关。ZNF598敲低抑制细胞培养物中的人GBM神经球形成和果蝇体内的Myc依赖性肿瘤生长。有趣的是,SARS-COV-2编码的翻译调节子Nsp1作用于ZNF598以抑制cMyc翻译并因此抑制cMyc依赖性癌症生长。值得注意的是,Nsp1对翻译和RQC相关因子ATP结合盒亚家族E成员1表现出合成毒性,尽管它通常与癌细胞中的cMyc呈正相关,Nsp1选择下调cMyc并抑制肿瘤生长。因此,c-myc翻译过程中的核糖体停滞提供了可行的癌细胞脆弱性。
    Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基孔肯雅病毒(CHIKV),通过蚊子传播,对全球健康构成重大威胁。目前,目前尚无有效的治疗方案来减轻疾病负担.缺乏针对CHIKV的批准疗法以及复杂的慢性肌肉骨骼和神经系统表现引起了人们的关注。重新利用药物可以为制定有效的治疗策略提供迅速的途径。RNA加帽是非结构蛋白1(nsP1)在CHIKV复制中的关键步骤。在这项研究中,FDA批准的针对CHIKVnsP1甲基转移酶(MTase)的抗病毒药物已通过基于结构的虚拟筛选进行鉴定。盐酸小檗碱(BH),ABT199/维奈托克(ABT),和波纳替尼(PT)是最热门的,表现出强大的结合能。基于色氨酸荧光光谱法的测定证实了BH-,ABT-,和PT纯化nsP1,KD值为5.45μM,161.3μM,和〜3.83μM,分别。在基于毛细管电泳的检测中,观察到CHIKVnsP1MTase活性呈剂量依赖性下降.用BH治疗,ABT,和PT导致病毒滴度的剂量依赖性降低,IC50<100,〜6.75和<3.9nM,分别,并降低病毒mRNA水平。nsP1MTases在甲病毒中高度保守;因此,BH,ABT,还有PT,正如预期的那样,抑制辛德毕斯病毒(SINV)复制子的复制机制,IC50~1.94,~0.23,>1.25μM,分别。这些结果强调了重新利用药物作为针对CHIKV的快速和有效的抗病毒治疗剂的功效和希望。
    Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 μM, ∼161.3 μM, and ∼3.83 μM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 μM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基孔肯雅病毒(CHIKV)是一种蚊子传播的病原体,可导致人类急性肌肉骨骼疾病。病毒RNA基因组的复制发生在专门的膜复制细胞器(RO)或球体中,其中含有病毒复制复合体。最初由RNA合成相关的质膜变形产生,甲病毒RO通常被快速内吞以产生I型细胞病变液泡(CPV-I),从中挤出新生的RNA用于细胞质翻译。相比之下,CHIKVRO内在化程度很低,在感染后期提出了他们的命运和功能问题。这里,使用原位低温电子显微镜方法,我们调查了CHIKVRO的结果和感染的人类细胞中相关的复制机制。我们证明了CHIKVRO在质膜上的后期持续存在,在球颈处有一个冠状的蛋白质复合物,类似于最近解决的复制复合物。这些隔室出乎意料的异质和大直径表明,这些细胞器的动态生长超出了单个RNA基因组的复制。周围细胞质区域的超微结构分析支持长出的CHIKVRO在病毒RNA合成中保持动态活性并输出到细胞胞质溶胶以进行蛋白质翻译。有趣的是,具有均匀直径的稀有RO也在CPV-I中被少量内在化,接近未知功能的蜂窝状排列,在未感染的对照中不存在,从而暗示了这种内在化的时间调节。总之,这项研究揭示了感染细胞中CHIKVRO的动态模式和与细胞膜界面相关的病毒复制。重要意义基孔肯雅病毒(CHIKV)是一种正链RNA病毒,其基因组复制需要专门的膜复制细胞器(RO)。我们对这个病毒周期阶段的了解仍然不完整,特别是关于感染细胞中CHIKVRO的命运和功能动力学。这里,我们表明,CHIKVRO维持在质膜超过第一个病毒周期,继续生长并在病毒RNA复制和向细胞胞质溶胶的输出中动态活跃,其中翻译发生在RO附近。这与细胞质液泡内化过程中RO的均匀直径相反,通常与功能未知的蜂窝状排列有关,提出了一种调节机制。这项研究为人类细胞中CHIKVRO的动力学和命运提供了新的思路,因此,我们对基孔肯雅病毒周期的理解。
    Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非结构蛋白1(Nsp1)通过抑制宿主mRNA的翻译并促进其降解,代表了最关键的SARS-CoV-2毒力因子之一。我们选择了具有位于蛋白质的N-和C-末端的特异性Nsp1缺失的天然存在的病毒谱系。我们的数据为Nsp1如何协调宿主和病毒mRNA识别的这些功能提供了新的见解。Nsp1N端部分的残基82-85可能在对接40SmRNA进入通道中起作用,保持宿主基因表达的抑制而不影响细胞mRNA的衰变。此外,该结构域可防止含有5'-前导序列的病毒mRNA逃避翻译抑制。这些发现支持Nsp1蛋白中存在差异调节mRNA识别的不同结构域。翻译和营业额。这些见解对靶向病毒蛋白的药物的开发具有重要意义,并为SARS-CoV-2Nsp1中的特定突变如何减弱病毒提供了新的证据。
    Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5\'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2(严重急性呼吸综合征冠状病毒2)的非结构蛋白1(Nsp1)是一种毒力因子,靶向多种细胞途径以抑制宿主基因表达和抗病毒反应。然而,各种Nsp1介导的功能的潜在机制及其对SARS-CoV-2毒力的贡献仍不清楚.Nsp1的靶标是mRNA(信使核糖核酸)输出受体NXF1-NXT1,其介导mRNA从细胞核向细胞质的核输出。基于Nsp1的晶体结构,我们在Nsp1表面上产生了突变体,并鉴定了一个酸性N末端贴片,该贴片对于与NXF1-NXT1的相互作用至关重要。可光活化的Nsp1探针揭示NXF1的RNA识别基序(RRM)结构域作为Nsp1的N-末端结合位点。通过突变Nsp1N末端酸性贴片,我们确定了Nsp1的功能分离突变体,该突变体保留了其翻译抑制功能,但实质上失去了与NXF1的相互作用,并恢复了Nsp1介导的mRNA输出抑制.然后,我们在Nsp1N端酸性贴片上产生了重组(r)SARS-CoV-2突变体,发现该表面是促进NXF1结合和抑制宿主mRNA核输出的关键,病毒复制,和体内致病性。因此,这些发现提供了对Nsp1介导的mRNA输出抑制的机制理解,并确定了该途径在SARS-CoV-2毒力中的重要性。
    The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸综合征冠状病毒2非结构蛋白1(Nsp1-CT)的固有无序C末端肽区通过阻断信使RNA(mRNA)进入40S核糖体入口隧道来抑制宿主蛋白合成。铜(II)离子水溶液以微摩尔亲和力与无序肽结合,创造一种可能的策略来恢复宿主感染期间的蛋白质合成。在无序蛋白质区域(Nsp1-CT10)的10个残基模型上进行电子顺磁共振(EPR)和色氨酸荧光测量,结合先进的量子力学计算,表明该肽作为多齿配体与铜(II)结合。得出了铜(II)-肽复合物的两个优化的计算模型:一个对应于pH6.5,另一个描述了pH7.5至8.5的复合物。基于计算的模型结构的模拟EPR光谱与实验光谱非常吻合。
    The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    冠状病毒病19是由具有单链正义核糖核酸(RNA)基因组的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)包膜病毒引起的。CoV非结构蛋白(nsp)1是一种多功能蛋白,经过翻译关闭,信使RNA(mRNA)裂解,和RNA结合。C-末端区参与翻译截断和RNA切割。SARS-CoV-2nsp1的N末端区域在分离的SARS-CoV-2变体中高度保守。然而,I-004变体,在早期SARS-CoV-2大流行期间被隔离,在nsp1区域丢失了8个氨基酸。在这项研究中,我们发现这8个氨基酸对于病毒在受感染的干扰素无能力细胞中的复制是重要的,并且丢失这些氨基酸的重组病毒在仓鼠模型的肺中具有低致病性。8个氨基酸诱导突变的缺失发生在5'非翻译区(UTR),这表明nsp1有助于病毒基因组在复制过程中的稳定性。
    Coronavirus disease 19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enveloped virus with a single-stranded positive-sense ribonucleic acid (RNA) genome. The CoV non-structural protein (nsp) 1 is a multifunctional protein that undergoes translation shutoff, messenger RNA (mRNA) cleavage, and RNA binding. The C-terminal region is involved in translational shutoff and RNA cleavage. The N-terminal region of SARS-CoV-2 nsp1 is highly conserved among isolated SARS-CoV-2 variants. However, the I-004 variant, isolated during the early SARS-CoV-2 pandemic, lost eight amino acids in the nsp1 region. In this study, we showed that the eight amino acids are important for viral replication in infected interferon-incompetent cells and that the recombinant virus that lost these amino acids had low pathogenicity in the lungs of hamster models. The loss of eight amino acids-induced mutations occurred in the 5\' untranslated region (UTR), suggesting that nsp1 contributes to the stability of the viral genome during replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    猪急性腹泻综合征冠状病毒(SADS-CoV)是一种引起急性水样腹泻的新型猪肠道冠状病毒,呕吐,新生仔猪脱水。III型干扰素(IFN-λ)应答充当对抗在肠上皮细胞中复制的病毒的主要防御。然而,目前没有关于SADS-CoV如何调节IFN-λ产生的信息。在这项研究中,我们利用IPI-FX细胞(猪回肠上皮细胞系)作为体外模型来研究SADS-CoV针对IFN-λ应答的潜在免疫逃避策略.我们的结果表明,SADS-CoV感染抑制了聚(I:C)诱导的IFN-λ1的产生。通过筛选SADS-CoV编码的蛋白质,nsp1,nsp5,nsp10,nsp12,nsp16,E,S1和S2被鉴定为IFN-λ1产生的拮抗剂。具体来说,SADS-CoVnsp1阻碍了MAVS介导的IFN-λ1启动子的激活,TBK1,IKKε,IRF1SADS-CoV和nsp1均阻碍了聚(I:C)诱导的IRF1核易位。此外,SADS-CoVnsp1通过泛素介导的蛋白酶体途径降解IRF1而不与之相互作用。总的来说,我们的研究提供了SADS-CoV抑制III型IFN应答的第一个证据,揭示SADS-CoV逃避宿主免疫反应的分子机制。
    Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号