Non-lytic

非裂解
  • 文章类型: Journal Article
    背景:微生物膨胀蛋白(EXLXs)是与参与植物细胞壁形成的植物膨胀蛋白同源的非裂解蛋白。由于其非裂解细胞壁松动特性和潜在的解聚纤维素结构,人们对探索微生物膨胀蛋白(EXLX)协助纤维素生物质加工以用于更广泛的生物技术应用的能力有相当大的兴趣。在这里,在结合纤维素的能力方面,比较了具有不同模块化结构和不同系统发育起源的EXLX,纤维素,和几丁质底物,在结构上修饰纤维素原纤维,并促进硬木纸浆的酶解构。
    结果:五种异源生产的EXLXs(密根氏杆菌;CmiEXLX2,水牙树;DaqEXLX1,糖质黄单胞菌;XsaEXLX1,无植物。;NspEXLX1和疫霉;PcaEXLX1)被证明在pH5.5时与木聚糖和硬木纸浆结合,CmiEXLX2(带有2家族碳水化合物结合模块)也与结晶纤维素结合良好。小角度X射线散射显示,用CmiEXLX2,DaqEXLX1或NspEXLX1处理后,相邻纤维素微纤丝之间的纤丝间距离增加了20-25%。相应地,将木聚糖酶与CmiEXLX2和DaqEXLX1相结合,可将硬木纸浆的产品产量提高约25%,在用CmiEXLX2、DaqEXLX1和NspEXLX1补充来自里氏木霉的TrAA9ALPMO的同时,产品总收率提高了35%以上。
    结论:这种不同EXLXs的直接比较揭示了对纤维素微纤维的原纤间距和预测作用于纤维表面的碳水化合物活性酶的性能的一致影响。这些发现揭示了使用EXLXs从纤维素生物质创建增值材料的新可能性。
    BACKGROUND: Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.
    RESULTS: Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20-25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%.
    CONCLUSIONS: This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抗菌肽(AMPs)是在多种生物体中发现的各种分子,可作为针对不同种类的感染性病原体(细菌,病毒,和真菌,等。).这项研究探索了文献中报道的9种候选药物对人类和动物细菌的抗菌活性,(即,大肠杆菌,金黄色葡萄球菌,和铜绿假单胞菌)对淀粉样欧文氏菌(E.淀粉样),pome水果火疫病的病因。使用活定量PCR(v-qPCR)在体外评估了这些肽对淀粉样大肠杆菌的抗菌活性,荧光显微镜(FM),光密度(OD),和透射电子显微镜(TEM),同时在治疗梨果实的实验性火疫病中评估了体内控制功效。为了将来安全和环保地使用它们,该研究还使用动物和植物真核细胞来评估这些AMP的可能毒性。体外结果表明,KL29是抑制淀粉样大肠杆菌细胞增殖的最有效的肽。此外,v-qPCR的结果,FM,和TEM表明,当以不同浓度使用时,KL29具有双功能作用机制(裂解和非裂解)。在体内实验应用时,KL29将火疫病症状减少了85%。此外,它对动物或植物细胞没有影响,从而证明了其作为抗菌剂安全使用的潜力。这项研究揭示了一种新的,有效的抗菌肽,用于淀粉及其作用方式。可用于开发火疫病的可持续治疗方法。
    Antimicrobial peptides (AMPs) are a various group of molecules found in a wide range of organisms and act as a defense mechanism against different kinds of infectious pathogens (bacteria, viruses, and fungi, etc.). This study explored the antibacterial activity of nine candidates reported in the literature for their effect on human and animal bacteria, (i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) against Erwinia amylovora (E. amylovora), the causal agent of fire blight disease on pome fruits. The antibacterial activity of these peptides against E. amylovora was evaluated in vitro using viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM), while the in vivo control efficacy was evaluated in treating experimental fire blight on pear fruits. With a view to their safe and ecofriendly field use in the future, the study also used animal and plant eukaryotic cells to evaluate the possible toxicity of these AMPs. Results in vitro showed that KL29 was the most potent peptide in inhibiting E. amylovora cell proliferation. In addition, the results of v-qPCR, FM, and TEM showed that KL29 has a bifunctional mechanism of action (lytic and non-lytic) when used at different concentrations against E. amylovora. KL29 reduced fire blight symptoms by 85% when applied experimentally in vivo. Furthermore, it had no impact on animal or plant cells, thus demonstrating its potential for safe use as an antibacterial agent. This study sheds light on a new and potent antibacterial peptide for E. amylovora and its modes of action, which could be exploited to develop sustainable treatments for fire blight.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A highly sensitive and selective non-lytic M13 phage-based electrochemical impedance spectroscopy (EIS) cytosensor for early detection of coliforms is introduced for the first time. Gold nanoparticles were electrochemically deposited on the surface of glassy carbon electrode, and the M13 phage particles were immobilized on them using 3-mercaptopropionic acid linker and zero-length crosslinking chemistry (EDC/NHS). Next, the sensor surface was blocked to avoid non-specific binding. The M13-EIS cytosensor was tested for detection of F+ pili Escherichia coli species, using XL1-Blue and K12 strains, as examples of coliforms. The selectivity against non-host strains was demonstrated using Pseudomonas Chlororaphis. The binding of E. coli to the M13 phage on the cytosensor surface increased the charge transfer resistance, enabling detection of coliforms. The biosensor achieved a limit of detection (LOD) of 14 CFU/mL, the lowest reported to-date using EIS-phage sensors, and exhibited a high selectivity towards the tested coliforms. The SEM micrographs confirmed the successful capturing of E. coli on the M13-based EIS cytosensor. Moreover, the sensor showed almost the same sensitivity in the simulated river water samples as in phosphate buffer, reflecting its applicability to real samples. On the other hand, this sensor system exhibited high stability under harsh environmental conditions of pH (3.0-10.0) and temperature as high as 45 °C for up to two weeks. Overall, this sensor system has excellent potential for real field detection of fecal coliforms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We report a dimerization strategy to enhance the antibacterial potency of an otherwise weak cationic amphiphilic polyproline helical (CAPH) peptide. Overall, the dimeric CAPHs were more active against Escherichia coli and Staphylococcus aureus than the monomeric counterpart, reaching up to a 60-fold increase in potency. At their minimum inhibitory concentration (MIC), the dimeric peptides demonstrated no hemolytic activity or bacterial membrane disruption as monitored by β-galactosidase release in E. coli. At higher concentrations the dimeric agents were found to induce β-galactosidase release, but maintained negligible hemolytic activity, pointing to a potential shift in the mechanism of action at higher concentrations. Thus, discontinuous dimerization of an unnatural proline-rich peptide was a successful strategy to create potent de novo antibacterial peptides without membrane lysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号