Nitrosomonadaceae

  • 文章类型: Journal Article
    富铵废水中的低能脱氮对于保护水环境至关重要。具有两个流入的单级硝化/厌氧氨氧化工艺处理含铵废水,从伤口过滤器的内部和外部供应,有望稳定地去除氮。使用不同的启动策略操作实验室规模的反应器;首先涉及在过滤器中形成厌氧氨氧化生物质后添加亚硝酸化接种物,表现出相对较低的氮去除率(0.171kgN/m3·d),在1.0kgN/m3·d的氮气负荷下。相反,第二个涉及逐步培养厌氧氨氧化和亚硝化微生物,提高了氮去除率(0.276kgN/m3·d)。此外,anammox(CandidatusBrocadia)和亚硝化细菌(Nitrosomonadaceae)共存于过滤器表面形成的生物膜中。使用第二种启动策略的反应器生物膜中亚硝酸化细菌的丰度(10.5%)高于使用第一种(3.7%)。因此,双流入亚硝化/厌氧氨氧化过程使用合适的启动策略有效地诱导了栖息地隔离。
    Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硝化作用是对淡水生态系统中氮的形态和分布的重要控制。然而,在贫营养湖泊中,氮库的季节性和催化这一过程的生物多样性尚未得到充分记录。这里,我们表明,平头湖中的氮库和硝化生物是时间和垂直动态的,硝化氮显示特定的喜好取决于季节。虽然氨氧化细菌(AOB)亚硝唑科和亚硝酸盐氧化细菌(NOB)亚硝唑在夏季的深度占主导地位,氨氧化古细菌(AOA)亚硝基细菌和NOB亚硝基螺旋体在冬季变得丰富。鉴于铵的季节性明显,夏季浓度较高,我们假设这两个硝化基团之间的演替可能是由于氮亲和力,当氨浓度较高时,AOB更具竞争力,当AOA较低时,AOA更具竞争力。平头湖中的硝酸盐与其他北美湖泊中报道的硝酸盐具有超过99%的平均核苷酸同一性,但与欧洲和亚洲不同。表明地理隔离作为控制硝化者物种形成的因素。我们的研究表明,氮库和硝化种群存在季节性变化,强调了淡水生态系统中氮循环的动态时空性质。
    Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The Korean pine and broad-leaved mixed forests are the most typical and complete ecosystem among the global boreal forests, with extremely important ecological functions. However, few studies on the changes of soil ammonia oxidizers and potential nitrification after clear-cutting of forests are reported. In this study, in contrast to primary Korean pine forests, nitrate (NO3-) was significantly higher in secondary broad-leaved forests, while ammonium (NH4+) was on the contrary. The abundance of ammonia-oxidizing bacteria (AOB) was greatly higher in secondary broad-leaved forests, while levels of ammonia-oxidizing archaea (AOA) were not significantly different between them. The significant differences of community structure of AOA and AOB were observed in different forest types and soil layers. Compared with AOA, community compositions of AOB was more sensitive to forest type. The dominant groups of AOA were Nitrososphaera and Nitrosotalea, and the dominant group of AOB was Nitrosospira, of which Nitrosospira cluster 2 and 4 were functional groups with highly activity. Soil potential nitrification rate (PNR) was higher in secondary broad-leaved forests. Furthermore, PNR and AOB abundance had a significant positive correlation, but no significant correlation with AOA abundance. These results provide insights into the soil nitrogen balance and effects on forest restoration after clear-cutting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Alternations of gut microbiota (GM) in atrial fibrillation (AF) with elevated diversity, perturbed composition and function have been described previously. The current work aimed to assess the association of GM composition with AF recurrence (RAF) after ablation based on metagenomic sequencing and metabolomic analyses and to construct a GM-based predictive model for RAF. Compared with non-AF controls (50 individuals), GM composition and metabolomic profile were significantly altered between patients with recurrent AF (17 individuals) and non-RAF group (23 individuals). Notably, discriminative taxa between the non-RAF and RAF groups, including the families Nitrosomonadaceae and Lentisphaeraceae, the genera Marinitoga and Rufibacter and the species Faecalibacterium spCAG:82, Bacillus gobiensis and Desulfobacterales bacterium PC51MH44, were selected to construct a taxonomic scoring system based on LASSO analysis. After incorporating the clinical factors of RAF, taxonomic score retained a significant association with RAF incidence (HR = 2.647, P = .041). An elevated AUC (0.954) and positive NRI (1.5601) for predicting RAF compared with traditional clinical scoring (AUC = 0.6918) were obtained. The GM-based taxonomic scoring system theoretically improves the model performance, and the nomogram and decision curve analysis validated the clinical value of the predicting model. These data provide novel possibility that incorporating the GM factor into future recurrent risk stratification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: Ammonia oxidation is a significant process of nitrogen cycles in a lot of ecosystems sediments while there are few studies in shrimp culture pond (SCP) sediments. This paper attempted to explore the community diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in SCP sediments at different culture stages.
    RESULTS: We collected SCP sediments and analysed the community diversity and abundance of AOA and bacteria in shrimp pond sediment at different culture stages using the ammonia monooxygenase (amoA) gene with quantitative PCR (qPCR) and 16S rRNA gene sequencing. The AOB-amoA gene abundance was showed higher than AOA-amoA gene abundance in SCP sediments on Day 50 and Day 60 after shrimp larvae introducing into the pond, and the diversity of AOA in SCP sediments was higher than that of AOB. The phylogenetic tree revealed that the most of AOA were the member of Nitrosopumilus and Nitrososphaera, and the majority of AOB sequences were clustered into Nitrosospira, Nitrosomonas clusters 6a and 7. The AOA community has close relationship with total organic carbon (TOC), pH, total phosphorus (TP), nitrate reductase, urease, acid phosphatase and β-glucosidase. The AOB community was related to TOC, C/N and nitrate reductase.
    CONCLUSIONS: AOA and AOB play the different ecological roles in SCP sediments at different culture stages.
    CONCLUSIONS: Our results suggested that the different community diversity and abundance of AOA and AOB in SCP sediments, which may improve our ecological cognition of shrimp culture stages in SCP ecosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Ammonia removal is achieved partly by absorption and nitrification in biofilters, resulting in the accumulation of nitrogen and the necessity of treating the effluent water. We investigated the effects of thiosulfate addition to a biofilter containing pumice tuff for ammonia and nitrogen removal in a laboratory-scale experiment. The addition of thiosulfate to the circulating water led to a decreased nitrate and nitrite along with an increase of sulfate. The inorganic nitrogen in the circulating water decreased by up to 44% with thiosulfate addition compared to without thiosulfate. Batch experiments revealed that denitrification activity decreased exponentially along with increases in dissolved oxygen; however, approximately 30% of denitrification activity was maintained at dissolved oxygen concentration of 3.3 mg/L. Metabarcoding of 16S rRNA genes indicated that the genus Thiobacillus had a relative abundance of 0.002%-0.016% of total bacteria in the biofilter packing material. The circulating water pH was decreased below 5 with sulfur oxidation, and ammonium was accumulated without pH control resulting in a decrease in the relative abundance of the family Nitrosomonadaceae. Its relative abundance increased with control of pH to near neutral, indicating that ammonia-oxidizing activity could be maintained by adjusting pH. Thiosulfate addition could stimulate nitrogen removal by sulfur-dependent denitrification in biofiltration systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硝化抑制剂(NIs)3,4-二甲基吡唑(DMPP)和双氯胺(DCD)可以有效减少N2O的排放;但是,哪些物种是目标,这些NIs对微生物硝化群落的影响尚不清楚。这里,我们确定了与N2O排放相关的氨氧化细菌(AOB)物种,并在甘蔗下进行了258天的田间试验,评估了尿素和尿素与DCD和DMPP对硝化群落的影响。使用amoAAOB扩增子测序方法并挖掘以前的16SrRNA序列数据集,我们将最可能产生N2O的AOB鉴定为亚硝基螺旋体。并鉴定了亚硝基螺旋体(AOB),Nitrososphaera(古细菌氨氧化剂)和Nitrospira(亚硝酸盐氧化剂)是最丰富的,目前的硝化。肥料处理对AOB群落的α和β多样性没有影响。有趣的是,我们发现了三个具有硝化操作分类单位(OTU)的共同变量簇:具有N2O的产生N2O的AOB亚硝基螺旋体,NO3-,NH4+,充满水的孔隙空间(WFPS)和pH;AOA含NO3-,NH4+和pH;以及AOA亚硝基螺旋体和NOB亚硝基螺旋体与NH4+,这表明不同的驱动程序。这些结果支持在未施肥的土壤中同时出现不产生N2O的亚硝基螺旋体和亚硝基螺旋体,并在尿素施肥下促进产生N2O的亚硝基螺旋体。Further,我们建议在甘蔗下的热带土壤中,DMPP比DCD更有效。
    The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2 O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2 O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2 O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2 O-producing AOB Nitrosospira with N2 O, NO3 - , NH4 + , water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3 - , NH4 + and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4 + , which suggests different drivers. These results support the co-occurrence of non-N2 O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2 O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Chemoautotrophic ammonia-oxidizers and nitrite-oxidizers are responsible for a significant amount of soil nitrate production. The identity and composition of these active nitrifiers in soils under different long-term fertilization regimes remain largely under-investigated. Based on that soil nitrification potential significantly decreased in soils with chemical fertilization (CF) and increased in soils with organic fertilization (OF), a microcosm experiment with DNA stable isotope probing was further conducted to clarify the active nitrifiers. Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were found to actively respond to urea addition in soils with OF and no fertilizer (CK), whereas only AOB were detected in soils with CF. Around 98% of active AOB were Nitrosospira cluster 3a.1 in all tested soils, and more than 90% of active AOA were Nitrososphaera subcluster 1.1 in unfertilized and organically fertilized soils. Nitrite oxidation was performed only by Nitrospira-like bacteria in all soils. The relative abundances of Nitrospira lineage I and VI were 32% and 61%, respectively, in unfertilized soils, and that of Nitrospira lineage II was 97% in fertilized soils, indicating long-term fertilization shifted the composition of active Nitrospira-like bacteria in response to urea. This finding indicates that different fertilizer regimes impact the composition of active nitrifiers, thus, impacting soil nitrification potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comparative Study
    This research was conducted to compare chemical and microbiological properties during aerobic composting (AC) and vermicomposting (VC) of green waste. Relative to AC, VC significantly decreased the pH and lignin and cellulose contents, and significantly increased the electrical conductivity and total N and available P contents. For AC, BIrii41_norank (order Myxococcales) was the major bacterial genus at 30 d and again became dominant genus from 90-150 d, with relative abundances of 2.88% and 4.77-5.19%, respectively; at 45 d and 60 d, the dominant bacterial genus was Nitrosomonadaceae_uncultured (order Nitrosomonadales) with relative abundances of 2.83-7.17%. For VC, the dominant bacterial genus was BIrii41_norank (except at 45 d), which accounted for 2.11-7.96% of the total reads. The dominant fungal class was Sordariomycetes in AC (relative abundances 39.2-80.6%) and VC (relative abundances 42.1-69.5%). The abundances of microbial taxa and therefore the bacterial and fungal community structures differed between VC and AC. The quality of the green waste compost product was higher with VC than with AC. These results will also help to achieve further composting technology breakthroughs in reducing the composting time and improving compost quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Long-term effects of inorganic and organic fertilization on nitrification activity (NA) and the abundances and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated in an acidic Ultisol. Seven treatments applied annually for 27 years comprised no fertilization (control), inorganic NPK fertilizer (N), inorganic NPK fertilizer plus lime (CaCO3) (NL), inorganic NPK fertilizer plus peanut straw (NPS), inorganic NPK fertilizer plus rice straw (NRS), inorganic NPK fertilizer plus radish (NR), and inorganic NPK fertilizer plus pig manure (NPM). In nonfertilized soil, the abundance of AOA was 1 order of magnitude higher than that of AOB. Fertilization reduced the abundance of AOA but increased that of AOB, especially in the NL treatment. The AOA communities in the control and the N treatments were dominated by the Nitrososphaera and B1 clades but shifted to clade A in the NL and NPM treatments. Nitrosospira cluster 8a was found to be the most dominant AOB in all treatments. NA was primarily regulated by soil properties, especially soil pH, and the interaction with AOB abundance explained up to 73% of the variance in NA. When NL soils with neutral pH were excluded from the analysis, AOB abundance, especially the relative abundance of Nitrosospira cluster 8a, was positively associated with NA. In contrast, there was no association between AOA abundance and NA. Overall, our data suggest that Nitrosospira cluster 8a of AOB played an important role in the nitrification process in acidic soil following long-term inorganic and organic fertilization.IMPORTANCE The nitrification process is an important step in the nitrogen (N) cycle, affecting N availability and N losses to the wider environment. Ammonia oxidation, which is the first and rate-limiting step of nitrification, was widely accepted to be mainly regulated by AOA in acidic soils. However, in this study, nitrification activity was correlated with the abundance of AOB rather than that of AOA in acidic Ultisols. Nitrosospira cluster 8a, a phylotype of AOB which preferred warm temperatures, and low soil pH played a predominant role in the nitrification process in the test Ultisols. Our results also showed that long-term application of lime or pig manure rather than plant residues altered the community structure of AOA and AOB. Taken together, our findings contribute new knowledge to the understanding of the nitrification process and ammonia oxidizers in subtropical acidic Ultisol under long-term inorganic and organic fertilization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号