Nitric oxide synthase 1

  • 文章类型: Journal Article
    BACKGROUND: Although the clinical importance of heart failure with preserved ejection fraction has been extensively explored, most therapeutic regimens, including nitric oxide (NO) donors, lack therapeutic benefit. Although the clinical characteristics of heart failure with preserved ejection fraction are somewhat heterogeneous, diastolic dysfunction (DD) is one of the most important features. Here we report that neuronal NO synthase (nNOS) induces DD by S-nitrosylation of HDAC2 (histone deacetylase 2).
    METHODS: Two animal models of DD-SAUNA (SAlty drinking water/Unilateral Nephrectomy/Aldosterone) and mild transverse aortic constriction mice-as well as human heart samples from patients with left ventricular hypertrophy were used. Genetically modified mice that were either nNOS-ablated or HDAC2 S-nitrosylation-resistant were also challenged. N(ω)-propyl-L-arginine, an nNOS selective inhibitor, and dimethyl fumarate, an NRF2 (nuclear factor erythroid 2-related factor 2) inducer, were used. Molecular events were further checked in human left ventricle specimens.
    RESULTS: SAUNA or mild transverse aortic constriction stress impaired diastolic function and exercise tolerance without overt systolic failure. Among the posttranslational modifications tested, S-nitrosylation was most dramatically increased in both models. Utilizing heart samples from both mice and humans, we observed increases in nNOS expression and NO production. N(ω)-propyl-L-arginine alleviated the development of DD in vivo. Similarly, nNOS knockout mice were resistant to SAUNA stress. nNOS-induced S-nitrosylation of HDAC2 was relayed by transnitrosylation of GAPDH. HDAC2 S-nitrosylation was confirmed in both DD mouse and human left ventricular hypertrophy. S-nitrosylation of HDAC2 took place at C262 and C274. When DD was induced, HDAC2 S-nitrosylation was detected in wild-type mouse, but not in HDAC2 knock-in mouse heart that expressed HDAC2 C262A/C274A. In addition, HDAC2 C262A/C274A mice maintained normal diastolic function under DD stimuli. Gene delivery with adenovirus-associated virus 9 (AAV9)-NRF2, a putative denitrosylase of HDAC2, or pharmacological intervention by dimethyl fumarate successfully induced HDAC2 denitrosylation and mitigated DD in vivo.
    CONCLUSIONS: Our observations are the first to demonstrate a new mechanism underlying DD pathophysiology. Our results provide theoretical and experimental evidence to explain the ineffectiveness of conventional NO enhancement trials for improving DD with heart failure symptoms. More important, our results suggest that reduction of NO or denitrosylation of HDAC2 may provide a new therapeutic platform for the treatment of refractory heart failure with preserved ejection fraction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Objective: We previously found that chronic ketamine usages were associated with various psychotic and cognitive symptoms mimicking schizophrenia. The blockade of the NMDA receptor and subsequent nitric oxide synthase 1 (NOS1) dysfunction were found to be closely correlated with schizophrenia including NOS1 gene polymorphisms. We examined the allelic variants of the gene coding neuronal nitric oxide synthase 1 (NOS1) in chronic ketamine users in the Chinese population and analyzed the association between NOS1 gene polymorphism and psychopathological symptoms in chronic ketamine users. The association between the NOS1 polymorphism and ketamine use characteristics was also examined. Methods: One hundred ninety seven male chronic ketamine users and 82 controls were recruited. Four common SNPs of the NOS1 gene, rs6490121, rs41279104, rs3782206, and rs3782219, were examined by real-time PCR with the TaqMan® assay system. Psychopathological symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI), and the Beck Anxiety Inventory (BAI). Results: The genotype distribution of rs6490121 and rs41279104 in chronic ketamine users was significantly different from that in the control (p = 0.0001 and p = 0.002). The G allele frequency of rs6490121 in ketamine users was higher than that in the control (p = 2.23 * 10-6, OR = 3.07, 95% CI = 1.93-4.90). The T allele frequency of rs41279104 in chronic ketamine users was higher than that in the control (p = 0.01, OR = 1.76, 95% CI = 1.14-2.72). The BAI score was significantly different among the three genotypic groups of rs6490121 (F = 6.21, p = 0.002) in ketamine users; subjects of genotype AG and GG had a lower score than subjects of genotype AA. The score of the negative symptom subscale of PANSS was significantly different among the three genotypic groups of rs41279104 (F = 5.39, p = 0.005); in ketamine users, subjects of genotype CT and TT had a higher score than subjects of genotype CC. There was no difference in drug use characteristics in different genotypes of the four NOS1 gene polymorphisms tested in ketamine users (p > 0.05).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Comparative Study
    The collecting duct (CD) concentrates the urine, thereby maintaining body water volume and plasma osmolality within a normal range. The endocrine hormone arginine vasopressin acts in the CD to increase water permeability via the vasopressin 2 receptor (V2R)-aquaporin (AQP) axis. Recent studies have suggested that autocrine factors may also contribute to the regulation of CD water permeability. Nitric oxide is produced predominantly by nitric oxide synthase 1 (NOS1) in the CD and acts as a diuretic during salt loading. The present study sought to determine whether CD NOS1 regulates diuresis during changes in hydration status. Male and female control and CD NOS1 knockout (CDNOS1KO) mice were hydrated (5% sucrose water), water deprived, or acutely challenged with the V2R agonist desmopressin. In male mice, water deprivation resulted in decreased urine flow and increased plasma osmolality, copeptin concentration, and kidney AQP2 abundance independent of CD NOS1. In female control mice, water deprivation reduced urine flow, increased plasma osmolality and copeptin, but did not significantly change total AQP2; however, there was increased basolateral AQP3 localization. Surprisingly, female CDNOS1KO mice while on the sucrose water presented with symptoms of dehydration. Fibroblast growth factor 21, an endocrine regulator of sweetness preference, was significantly higher in female CDNOS1KO mice, suggesting that this was reducing their drive to drink the sucrose water. With acute desmopressin challenge, female CDNOS1KO mice failed to appropriately concentrate their urine, resulting in higher plasma osmolality than controls. In conclusion, CD NOS1 plays only a minor role in urine-concentrating mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Previous studies have suggested that nitric oxide (NO) which is synthetized by nitric oxide synthase (NOS) is closely related to the carcinogenesis and progression of colon cancer. However, the precise physiopathological role of NO on colon cancer remains unclear, and a lot of related studies focused on NOS2 and NOS3, but little on NOS1. Here, stable overexpression NOS1 of colon cancer cells were constructed to investigate whether NOS1 plays a special role in colon cancer. We observed that NOS1 protein was presented in mitochondria. Both the basal and cisplatin-induced mitochondrial superoxide were inhibited by NOS1, and the cisplatin-induced apoptosis was also inhibited by NOS1. Geldanamycin, a Hsp90 N-terminal inhibitor, was able to impede NOS1 translocation into mitochondria and reverse NOS1-induced apoptosis resistance. Importantly, SIRT3 activity was enhanced by NOS1, which contributes to the low level of mitochondrial superoxide and apoptosis resistance. Our data suggest a link between NOS1 and apoptosis resistance in colon cancer cells through mtNOS1-SIRT3-SOD2 axis. Furthermore, NOS1-induced apoptosis resistance could be reversed by inhibiting mitochondrial translocation of NOS1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Nitric oxide synthase 1 (NOS1) has been reported to promote various cancer processes including chemoresistance. However, the role of NOS1 in chemoresistance has remained unclear. ATP-binding cassette, subfamily G, member 2 (ABCG2) has been identified as a molecular cause of multidrug resistance in a number of cancer types, including ovarian cancer. The present study observed that in ovarian cancer cells, the expression of ABCG2 was significantly upregulated in response to cis-diamminedichloroplatinum (cisplatin/DDP) treatment, in addition the expression of NOS1 exhibited an increasing trend. Additionally, the levels of NOS1 and ABCG2 in chemoresistant ovarian cancer profiles in Gene Expression Omnibus datasets (GSE26712 and GSE51373) were higher than in chemosensitive profiles. Furthermore, overexpression of NOS1 could upregulate ABCG2 expression, and expression of ABCG2 was inhibited by NOS1 selective inhibitor (N-PLA). In assays of cell survival, NOS1 appeared to increase the potential for DDP resistance, and this effect was reversed by addition of ABCG2 inhibitor (verapamil). The present study indicated that NOS1-induced chemoresistance was partly mediated by the upregulation of ABCG2 expression. This result suggests a link between the expression of NOS1 and the ABCG2-associated chemoresistance in ovarian cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Cerebral palsy (CP) is the leading cause of motor disability in children; however, its pathogenesis is unknown in most cases. Growing evidence suggests that Nitric oxide synthase 1 (NOS1) is involved in neural development and neurologic diseases. The purpose of this study was to determine whether genetic variants of NOS1 contribute to CP susceptibility in a Han Chinese population.
    METHODS: A case-control study involving 652 CP patients and 636 healthy controls was conducted. Six SNPs in the NOS1 gene (rs3782219, rs6490121, rs2293054, rs10774909, rs3741475, and rs2682826) were selected, and the MassARRAY typing technique was applied for genotyping. Data analysis was conducted using SHEsis online software, and multiple test corrections were performed using SNPSpD online software.
    RESULTS: There were no significant differences in genotype and allele frequencies between patients and controls for the SNPs except rs6490121, which deviated from Hardy-Weinberg equilibrium and was excluded from further analyses. Subgroup analysis revealed differences in genotype frequencies between the CP with neonatal encephalopathy group (CP + NE) and control group for rs10774909, rs3741475, and rs2682826 (after SNPSpD correction, p = 0.004, 0.012, and 0.002, respectively). The T allele of NOS1 SNP rs3782219 was negatively associated with spastic quadriplegia (OR = 0.742, 95% CI = 0.600-0.918, after SNPSpD correction, p = 0.023). There were no differences in allele or genotype frequencies between CP subgroups and controls for the other genetic polymorphisms.
    CONCLUSIONS: NOS1 is associated with CP + NE and spastic quadriplegia, suggesting that NOS1 is likely involved in the pathogenesis of CP and that it is a potential therapeutic target for treatment of cerebral injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: To investigate whether four single nucleotide polymorphisms (SNPs) rs2293054 [Ile734Ile], rs1047735 [His902His], rs2293044 [Val1353Val], rs2682826 (3\'UTR) of nitric oxide synthase 1 (NOS1) are associated with the development and clinical phenotypes of ischemic stroke.
    METHODS: We enrolled 120 ischemic stroke patients and 314 control subjects. Ischemic stroke patients were divided into subgroups according to the scores of the National Institutes of Health Stroke Survey (NIHSS, <6 and ≥6) and Modified Barthel Index (MBI, <60 and ≥60). SNPStats, SNPAnalyzer, and HelixTree programs were used to calculate odds ratios (ORs), 95% confidence intervals (CIs), and p-values. Multiple logistic regression models were performed to analyze genetic data.
    RESULTS: No SNPs of the NOS1 gene were found to be associated with ischemic stroke. However, in an analysis of clinical phenotypes, we found that rs2293054 was associated with the NIHSS scores of ischemic stroke patients in codominant (p=0.019), dominant (p=0.007), overdominant (p=0.033), and log-additive (p=0.0048) models. Also, rs2682826 revealed a significant association in the recessive model (p=0.034). In allele frequency analysis, we also found that the T alleles of rs2293054 were associated with lower NIHSS scores (p=0.007). Respectively, rs2293054 had a significant association in the MBI scores of ischemic stroke in codominant (p=0.038), dominant (p=0.031), overdominant (p=0.045), and log-additive (p=0.04) models.
    CONCLUSIONS: These results suggest that NOS1 may be related to the clinical phenotypes of ischemic stroke in Korean population.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    To test the hypothesis that an amyloidogenic genetic background predisposes to worsening of post-TBI outcome, we investigated whether traumatic brain injury (TBI) in amyloid precursor protein (APP)/PS1 mice aggravates epileptogenesis and/or enhances somatomotor and cognitive impairment. To elaborate the mechanisms of worsening outcomes, we studied changes in the expression of genes involved in APP processing and Tau pathways in the perilesional cortex, ipsilateral thalamus, and ipsilateral hippocampus 16 weeks post-TBI. Mild (mTBI) or severe TBI (sTBI) was triggered using controlled cortical impact in 3-month-old APP/PS1 mice and wild-type (Wt) littermates. Morris water-maze revealed a genotype effect on spatial learning and memory as APP/PS1-sTBI mice performed more poorly than Wt-sTBI mice (p < 0.05). Epileptogenesis was affected by genotype and TBI as 88 % of APP/PS1-sTBI mice had epilepsy compared to 11 % in Wt-sTBI (genotype effect p < 0.01) or 50 % in APP/PS1-sham groups (TBI effect p < 0.05). The higher the seizure frequency, the higher the cortical expression of Nos1 (r = 0.83, p < 0.001) and Mapk3 (r = 0.67, p < 0.001). Immunohistochemical analysis confirmed increased amount of NOS1 protein in neuronal somata and processes in the perilesional cortex in APP/PS1-sTBI mice compared to APP/PS1-sham (p < 0.05) or Wt-sTBI mice (p < 0.01). Motor impairment correlated (p < 0.001) with the increased cortical expression of genes encoding proteins related to β-amyloid (Aβ) clearance, including Clu (r = 0.83), Abca1 (r = 0.78), A2m (r = 0.76), Apoe (r = 0.70), and Ctsd (r = 0.63). Immunohistochemical analysis revealed a focal reduction in Aβ load lateral to lesion core in APP/PS1-sTBI mice compared to APP/PS1-sham mice (p < 0.05). The present study provides the first comprehensive evidence of exacerbated epileptogenesis and its molecular mechanisms in Alzheimer\'s disease (AD)-related genetic background after TBI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Nitric oxide (NO) and NO synthase-1 (NOS1) are involved in the stress response and in depression. We compared NOS-NO alterations in rats exposed to chronic unpredictable stress (CUS) with alterations in major depressive disorder (MDD) in humans. In the hypothalamus of male CUS rats we determined NOS activity, and in the paraventricular nucleus (PVN) we determined NOS1-immunoreactive (ir) cell densities and co-localization of NOS1 with stress-related neuropeptides corticotropin-releasing hormone (CRH), vasopressin (AVP) or oxytocin (OXT). We measured plasma NO levels and cortisol in male medicine-naïve MDD patients and plasma NO and corticosterone (CORT) in CUS rats. In the CUS rat total NOS activity in the hypothalamus (P=0.018) and NOS1-ir cell density in the PVN were both significantly decreased (P=0.018), while NOS1 staining was mainly expressed in OXT-ir neurons in this nucleus. Interestingly, plasma NO levels were significantly increased both in male CUS rats (P=0.001) and in male MDD patients (P<0.001). Plasma CORT levels were increased in male CUS rats (P=0.001), while male MDD patients did not show a significant change in cortisol levels. In conclusion, the changes in plasma and hypothalamic NOS-NO of CUS rats and MDD were similar. The male CUS rat model may thus help us with our investigation of the mechanism underlying NOS-NO alterations in depression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号