Neuropil

Neuropil
  • 文章类型: Journal Article
    随着年龄的增长,动物会改变它们对周围世界的反应,产生发育阶段和地位适当的行为。新的工作发现,初级嗅觉神经的变化与蚂蚁的警报信息素特异性反应的自然发育变化有关。
    Animals change how they respond to the world around them as they age, giving rise to developmental stage and status appropriate behaviours. New work finds that changes in the primary olfactory neuropil are correlated with the natural developmental shift in alarm pheromone-specific responses of an ant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    节肢动物蘑菇体作为代表嗅觉刺激并将其与偶然事件联系起来的扩展层得到了充分研究。然而,果蝇中8%的蘑菇体Kenyon细胞主要接受视觉输入,其功能尚不清楚。这里,我们使用FlyWire成人全脑连接体识别视觉Kenyon细胞的输入。半球和连接体之间的输入库相似,某些输入被高度高估。Kenyon细胞突触前的许多视觉神经元具有较大的感受野,而中间神经元输入接收空间受限的信号,这些信号可以被调谐到特定的视觉特征。个体视觉Kenyon细胞从视觉通道的组合中随机采样稀疏输入,包括多个视叶神经痛。这些连接模式表明蘑菇体内的视觉编码,比如嗅觉编码,是稀疏的,分布式,和组合。然而,对较小的视觉Kenyon细胞群体的特定输入库表明视觉刺激的编码受限。
    The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与哺乳动物不同,鱼类和两栖动物等物种可以再生受损的脊髓,提供对潜在治疗目标的见解。本研究通过光镜和电子显微镜研究了莫利鱼脊髓的结构特征。最显着的特征是存在Mauthner细胞(M细胞),表现出巨大的细胞体和过程,以及与星形胶质细胞的突触连接。这些星形细胞连接包含突触小泡,表明M细胞末端的电传输。星形胶质细胞,用胶质纤维酸性蛋白(GFAP)标记,含有细胞质糖原颗粒,可能作为应急燃料源。确定了两种类型的少突胶质细胞:一种小的,黑暗的细胞和更大的细胞,更轻的细胞,两者都与少突胶质细胞转录因子2(Olig2)发生强烈反应。深色少突胶质细胞类似于人类少突胶质细胞前体,而轻型少突胶质细胞与成熟的人类少突胶质细胞相似。此外,灰质中的增殖神经元表达肌肉生长抑制素,Nrf2和Sox9。总的来说,这些发现表明,莫利鱼脊髓具有有利于脊髓再生的高级结构特征,可以作为研究中枢神经系统再生的极好模型。建议对Molly鱼脊髓的功能方面进行进一步研究。研究重点:Mauthner细胞(M细胞),它们典型的大细胞体和过程,是莫莉鱼脊髓最典型的特征,它与星形胶质细胞存在突触连接,其末端包含突触小泡,表明M细胞末端存在电传递。可以识别两种类型的少突胶质细胞;两者都与少突胶质细胞转录因子2(Olig2)反应强烈。灰质中枢的增殖神经元表达肌肉生长抑制素,Nrf2和Sox9。这项研究的结果表明,莫利鱼具有高度发达的结构特征,有利于脊髓再生。因此,它们可以被认为是研究中枢神经系统再生的典范模型.
    Unlike mammals, species such as fish and amphibians can regenerate damaged spinal cords, offering insights into potential therapeutic targets. This study investigates the structural features of the molly fish spinal cord through light and electron microscopy. The most notable characteristic was the presence of Mauthner cells (M-cells), which exhibited large cell bodies and processes, as well as synaptic connections with astrocytes. These astrocytic connections contained synaptic vesicles, suggesting electrical transmission at the M-cell endings. Astrocytes, which were labeled with glial fibrillary acidic protein (GFAP), contained cytoplasmic glycogen granules, potentially serving as an emergency fuel source. Two types of oligodendrocytes were identified: a small, dark cell and a larger, lighter cell, both of which reacted strongly with oligodendrocyte transcription factor 2 (Olig2). The dark oligodendrocyte resembled human oligodendrocyte precursors, while the light oligodendrocyte was similar to mature human oligodendrocytes. Additionally, proliferative neurons in the substantia grisea centralis expressed myostatin, Nrf2, and Sox9. Collectively, these findings suggest that the molly fish spinal cord has advanced structural features conducive to spinal cord regeneration and could serve as an excellent model for studying central nervous system regeneration. Further studies on the functional aspects of the molly fish spinal cord are recommended. RESEARCH HIGHLIGHTS: Mauthner cells (M-cell), with their typical large cell body and processes, were the most characteristic feature in Molly fish spinal cord, where it presented synaptic connections with astrocytes and their ends contained synaptic vesicles indicating an electrical transmission in the M-cells endings. Two types of oligodendrocytes could be recognized; both reacted intensely with Oligodendrocyte transcription factor 2 (Olig2). The proliferative neurons of the substantia grisea centralis expressed myostatin, Nrf2, and Sox9. The findings of this study suggest that molly fish possess highly developed structural features conducive to spinal cord regeneration. Consequently, they could be deemed an exemplary model for investigating central nervous system regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑能量预算指定了从细胞和突触活动的潜在机制中出现的代谢成本。虽然当前自下而上的能量预算使用细胞密度和突触密度的原型值,从一个人的个性化神经密度预测新陈代谢将是理想的。我们假设体内神经纤维密度可以来自磁共振成像(MRI)数据,由纵向弛豫(T1)MRI用于灰/白质区分和扩散MRI用于组织细胞性(表观扩散系数,ADC)和轴突方向性(分数各向异性,FA)。我们提出了一种机器学习算法,可以从体内MRI扫描中预测神经密度,其中离体Merker染色和体内突触小泡糖蛋白2A正电子发射断层扫描(SV2A-PET)图像是细胞和突触密度的参考标准,分别。我们使用来自10名健康受试者的高斯平滑T1/ADC/FA数据来训练人工神经网络,随后用于预测54名受试者的细胞和突触密度。尽管所有受试者的突触密度(0.93)和细胞密度(0.85)图都观察到了出色的直方图重叠,突触密度(0.89)和细胞密度(0.58)图的较低空间相关性提示个性化预测.这种概念验证的人工神经网络可以为个性化的能量图谱预测铺平道路,使功能神经影像学数据的微观解释。
    Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person\'s individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视觉电路发展的特征是将神经质细分成容纳不同突触连接组的层。我们发现在果蝇髓质中,这种分层的组织取决于轴突指导调节神经丛蛋白A。在丛蛋白A无效突变体中,与对照组相比,髓质神经纤维的突触层和单个神经元的乔化更宽,更少。对信号素功能的分析表明信号素1a,作用于延髓神经元的子集,是髓质夹层中神经丛蛋白A的主要合作伙伴。去除内源性神经丛蛋白A的细胞质结构域对髓质层形成的影响要小得多;然而,丛蛋白A的无效和细胞质结构域缺失突变均导致延髓神经纤维的整体形状改变。这些数据表明神经丛蛋白A作为受体介导髓质神经纤维的形态发生,并作为信号素1a的配体将其细分为各层。它的两个独立功能说明了一些引导分子如何通过各自扮演多个角色来组织复杂的大脑结构。
    Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    干细胞增殖和静止之间的平衡对于维持组织稳态至关重要。大脑中的神经干细胞(NSC)具有从可逆静止状态重新激活以产生新神经元的能力。然而,NSC如何在静止和再激活之间转运仍然很大程度上难以捉摸。果蝇幼虫脑神经干细胞,也被称为成神经细胞,已成为研究NSC静止和再激活的分子机制的出色体内模型。这里,我们讨论了目前对果蝇中静止神经干细胞再激活的分子机制的理解。我们回顾了果蝇静止NSC中表观遗传调控和微管细胞骨架的最新进展,以及它们与调控NSC再激活所需的信号通路的交叉对话。
    The balance between proliferation and quiescence of stem cells is crucial in maintaining tissue homeostasis. Neural stem cells (NSCs) in the brain have the ability to be reactivated from a reversible quiescent state to generate new neurons. However, how NSCs transit between quiescence and reactivation remains largely elusive. Drosophila larval brain NSCs, also known as neuroblasts, have emerged as an excellent in vivo model to study molecular mechanisms underlying NSC quiescence and reactivation. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs in Drosophila. We review the most recent advances on epigenetic regulations and microtubule cytoskeleton in Drosophila quiescent NSCs and their cross-talk with signaling pathways that are required in regulating NSC reactivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小儿脑肿瘤的幸存者长期神经心理困难的风险很高。在目前的案例研究中,我们提供了一个罕见患者的10年(从9岁到19岁)的纵向神经心理学数据,很大,双额叶,具有丰富的神经纤维和真正的玫瑰花结的胚胎性肿瘤(ETANTR),这通常与低生存率和严重的神经系统影响有关。结果表明,患者的认知功能基本完整,执行功能有特殊困难,精细的运动技能,和适应功能在她最近的神经心理学10年随访。这些结果突出了在众多风险因素(非常大的肿瘤大小,多模式治疗,和癫痫发作史)。患者保护因素(高水平的认知储备,家庭支持,和适当的全面教育服务)可能有助于患者的良好神经心理学结果。患者在脑肿瘤诊断时的年龄(9岁)和相关治疗处于新兴高阶认知功能发展的关键时期,这可能会影响执行功能技能和次要适应性技能的获得。因此,患有ETANTR或其他额叶肿瘤的儿童脑肿瘤幸存者需要有针对性的执行功能筛查和积极干预.
    Survivors of pediatric brain tumors are at high risk for long-term neuropsychological difficulties. In the current case study, we present longitudinal neuropsychological data spanning 10 years (from age 9 to 19 years) of a patient with a rare, very large, bifrontal, embryonal tumor with abundant neuropil and true rosettes (ETANTR), which is typically associated with poor survivorship and significant neurological impact. Results demonstrated that the patient had largely intact cognitive functioning with specific difficulties in executive functioning, fine motor skills, and adaptive functioning at her most recent neuropsychology 10-year follow-up. These results highlight outcomes for a patient with remarkable resiliency in the context of numerous risk factors (a very large tumor size, multi-modal treatment, and seizure history). Patient protective factors (a high level of cognitive reserve, family support, and appropriate comprehensive educational services) likely contributed to the patient\'s favorable neuropsychological outcome. The patient\'s age at brain tumor diagnosis (9 years) and associated treatment was at a critical period of development for emerging higher order cognitive functions which likely impacted acquisition of executive functioning skills and secondarily adaptive skill outcomes. Consequently, pediatric brain tumor survivors with ETANTR or other frontal tumors require targeted screening of executive functions and proactive interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Felids已经为专性食肉动物进化了一套专门的形态适应性。尽管已经对Felidae的肌肉骨骼解剖进行了广泛的研究,费利德的比较神经解剖学是相对未探索。关于猫科动物的大脑解剖结构的变化如何与社会性的物种特异性差异有关,狩猎策略,或活动模式。我们定量分析了前额叶神经纤维变异,主电机,和六种猫科动物的主要视觉皮层(Pantheraleo,Pantherauncia,提格里斯,PantheraLeopardus,Acinonyxjubatus,Felissylvestrisdomesticus)toinvestigaterelationshipwithbrainsize,神经元细胞参数,并选择行为和生态因素。Neuropil是致密的,复杂的轴突网络,树突,和大脑中的突触,在神经元之间的信息处理和交流中起着至关重要的作用。神经纤维比例存在显著的物种和区域差异,非洲狮子,猎豹,与其他物种相比,老虎在所有三个皮质区域都有更多的神经纤维。根据回归分析,我们发现前额叶皮层神经纤维部分的增加支持社会和行为的灵活性,而在初级运动皮层中,这促进了狩猎运动所需的神经活动。初级视觉皮层中较大的Neuropil分数可能有助于与diel活动模式相关的视觉需求。这些结果提供了FelidaeNeuropil分数变异的跨物种比较,特别是研究不足的Panthera,并为Panthera和猎豹的神经解剖学趋同提供证据。
    BACKGROUND: Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns.
    METHODS: We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons.
    RESULTS: There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns.
    CONCLUSIONS: These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:对非实验室物种的研究一直是建立哺乳动物新皮层基本组织的更广泛努力的一部分,因为这些物种可能提供与皮质组织相关的独特见解,函数,和进化。
    方法:在本研究中,中型(5-11公斤体重)亚马逊啮齿动物的三个体感皮质区域的组织,Paca(Cuniculuspaca),在切向切片中使用电生理微电极作图和组织化学技术(细胞色素氧化酶和NADPH心肌黄递酶)的组合进行测定。
    结果:电生理标测显示位于顶叶皮层的体感初级区(S1),其特征性足内侧/头外侧对侧体表表现与其他物种相似。S1由两个容纳对触觉刺激有反应的神经元的区域横向邻接,可能是次级体感(S2)和顶叶腹侧(PV)皮质区域,表明对侧身体表面的镜像反转表示(相对于S1)。假定的初级视觉(V1)和初级听觉(A1)皮质区域的限制,以及S1中对侧体表的完整表示,都是通过组织化学染色间接确定的。就像小啮齿动物描述的桶田一样,我们确定了位于S1的面部表示中的模块化布置。
    结论:相对位置,躯体组织,在所研究的三个paca体感皮层区域中,神经纤维组织化学反应性的模式与其他哺乳动物物种中描述的相似,为哺乳动物顶叶皮层的体感皮层提供共同的组织计划的额外证据。
    BACKGROUND: The study of non-laboratory species has been part of a broader effort to establish the basic organization of the mammalian neocortex, as these species may provide unique insights relevant to cortical organization, function, and evolution.
    METHODS: In the present study, the organization of three somatosensory cortical areas of the medium-sized (5-11 kg body mass) Amazonian rodent, the paca (Cuniculus paca), was determined using a combination of electrophysiological microelectrode mapping and histochemical techniques (cytochrome oxidase and NADPH diaphorase) in tangential sections.
    RESULTS: Electrophysiological mapping revealed a somatotopically organized primary somatosensory cortical area (S1) located in the rostral parietal cortex with a characteristic foot-medial/head-lateral contralateral body surface representation similar to that found in other species. S1 was bordered laterally by two regions housing neurons responsive to tactile stimuli, presumably the secondary somatosensory (S2) and parietal ventral (PV) cortical areas that evinced a mirror-reversal representation (relative to S1) of the contralateral body surface. The limits of the putative primary visual (V1) and primary auditory (A1) cortical areas, as well as the complete representation of the contralateral body surface in S1, were determined indirectly by the histochemical stains. Like the barrel field described in small rodents, we identified a modular arrangement located in the face representation of S1.
    CONCLUSIONS: The relative location, somatotopic organization, and pattern of neuropil histochemical reactivity in the three paca somatosensory cortical areas investigated are similar to those described in other mammalian species, providing additional evidence of a common plan of organization for the somatosensory cortex in the rostral parietal cortex of mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    星形胶质细胞是连接中枢神经系统(CNS)的主要神经胶质细胞。星形胶质细胞的主要特征是其复杂且视觉迷人的形态,被称为浓密,海绵状,和明星一样。这篇综述的一个中心原则是,这种复杂的形态形状演变为允许星形胶质细胞与不同距离的细胞接触并发出信号,以便采样,规范,并有助于细胞外环境,因此在生理和疾病期间广泛参与细胞-细胞信号传导。最近使用改进的成像方法和细胞特异性分子评估揭示了有关星形胶质细胞形态学的结构组织和分子基础的新信息,星形胶质细胞形态发生的机制,以及形态减少对疾病状态的贡献。这些见解重新点燃了对星形胶质细胞形态学复杂性的兴趣,将其作为基础神经胶质生物学的基石,并作为CNS中多细胞空间和生理相互作用的关键基础。
    Astrocytes are predominant glial cells that tile the central nervous system (CNS). A cardinal feature of astrocytes is their complex and visually enchanting morphology, referred to as bushy, spongy, and star-like. A central precept of this review is that such complex morphological shapes evolved to allow astrocytes to contact and signal with diverse cells at a range of distances in order to sample, regulate, and contribute to the extracellular milieu, and thus participate widely in cell-cell signaling during physiology and disease. The recent use of improved imaging methods and cell-specific molecular evaluations has revealed new information on the structural organization and molecular underpinnings of astrocyte morphology, the mechanisms of astrocyte morphogenesis, and the contributions to disease states of reduced morphology. These insights have reignited interest in astrocyte morphological complexity as a cornerstone of fundamental glial biology and as a critical substrate for multicellular spatial and physiological interactions in the CNS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号