Neuroligin

Neuroligin
  • 文章类型: Journal Article
    社会隔离导致各种物种的社会行为发生深刻变化。然而,调节社会隔离和社会恢复的行为反应的遗传和分子机制仍有待阐明。这里,我们使用两种不同的协议(社会空间偏好和社交能力,形成群体的自发倾向)。我们发现,社会隔离增加了社会空间,降低了社交能力。社会隔离的这些影响是可逆的,并且可以在集体住房3天后减轻。在社会丰富的环境中,具有已知增加的社会空间的Neuroligin3(自闭症相关的Neuroligin基因的直系同源物)功能丧失的苍蝇仍然能够从社会隔离中恢复过来。我们还表明,男性需要多巴胺(DA)来应对社会隔离和恢复,而女性则不需要。此外,只有男性,DA水平在隔离后降低,在集体住房后无法恢复。最后,在神经素3的社会富集果蝇突变体中,雄性的DA水平降低,但不是女性。我们提出了一个模型来解释DA和neuroligin3如何以动态和性别特定的方式参与对社会隔离及其恢复的行为反应。
    Social isolation causes profound changes in social behaviour in a variety of species. However, the genetic and molecular mechanisms modulating behavioural responses to social isolation and social recovery remain to be elucidated. Here, we quantified the behavioural response of vinegar flies to social isolation using two distinct protocols (social space preference and sociability, the spontaneous tendencies to form groups). We found that social isolation increased social space and reduced sociability. These effects of social isolation were reversible and could be reduced after 3 days of group housing. Flies with a loss of function of neuroligin3 (orthologue of autism-related neuroligin genes) with known increased social space in a socially enriched environment were still able to recover from social isolation. We also show that dopamine (DA) is needed for a response to social isolation and recovery in males but not in females. Furthermore, only in males, DA levels are reduced after isolation and are not recovered after group housing. Finally, in socially enriched flies mutant for neuroligin3, DA levels are reduced in males, but not in females. We propose a model to explain how DA and neuroligin3 are involved in the behavioural response to social isolation and its recovery in a dynamic and sex-specific manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰腺导管腺癌(PDAC)是一种预后不佳的肿瘤,由称为胰腺上皮内瘤变(PanIN)的前体病变引起。从低级到高级PanIN的进展被认为是肿瘤的启动,需要对这种转换有更深入的了解。这里,我们发现突触分子neuroligin-2(NLGN2)由胰腺外分泌细胞表达,在接触抑制和上皮极性的调节中起着至关重要的作用,这表征了从低档到高档Panin的转换。NLGN2定位于腺泡细胞中的紧密连接,在低等级PanIN中弥散分布在胞质溶胶中,而在高级PanIN和高百分比的高级PDAC中丢失。机械上,NLGN2对于PALS1/PATJ复合物的形成是必需的,进而通过降低YAP功能诱导接触抑制。我们的结果为NLGN2在神经系统外的功能提供了新的见解,并可用于模拟PanIN进展。
    Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a dismal prognosis that arises from precursor lesions called pancreatic intraepithelial neoplasias (PanINs). Progression from low- to high-grade PanINs is considered as tumor initiation, and a deeper understanding of this switch is needed. Here, we show that synaptic molecule neuroligin-2 (NLGN2) is expressed by pancreatic exocrine cells and plays a crucial role in the regulation of contact inhibition and epithelial polarity, which characterize the switch from low- to high-grade PanIN. NLGN2 localizes to tight junctions in acinar cells, is diffusely distributed in the cytosol in low-grade PanINs and is lost in high-grade PanINs and in a high percentage of advanced PDACs. Mechanistically, NLGN2 is necessary for the formation of the PALS1/PATJ complex, which in turn induces contact inhibition by reducing YAP function. Our results provide novel insights into NLGN2 functions outside the nervous system and can be used to model PanIN progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自闭症谱系障碍(ASD)是一种神经发育疾病,会导致重复行为并削弱社交交流。易感基因和环境因素等遗传变化促进ASD发病。编码细胞粘附分子的神经素(NLGNs)和神经素(NRXNs)复合物中的突变在突触形成中具有重要作用,转录,和兴奋性-抑制性平衡。ASD的发病机制可能部分,至少,与突触功能障碍有关。这里,对引起ASD的突触功能障碍中涉及的NRXNs和NLGNs基因和信号通路进行了综述.此外,ASD中NLGNs和NRXNs基因的新见解将被赋予。
    Autism spectrum disorder (ASD) is a neurodevelopmental illness that leads to repetitive behavior and debilitates social communication. Genetic changes such as susceptible genes and environmental factors promote ASD pathogenesis. Mutations in neuroligins (NLGNs) and neurexin (NRXNs) complex which encode cell adhesion molecules have a significant part in synapses formation, transcription, and excitatory-inhibitory balance. The ASD pathogenesis could partly, at the least, be related to synaptic dysfunction. Here, the NRXNs and NLGNs genes and signaling pathways involved in the synaptic malfunction that causes ASD have been reviewed. Besides, a new insight of NLGNs and NRXNs genes in ASD will be conferred.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:Neuroligin-3是一种参与突触发育和功能的突触后粘附分子。它牵涉到罕见的,单基因形式的自闭症,其脱落对胶质瘤的肿瘤微环境至关重要。虽然Neuroligin家族的其他成员通过与突触后支架蛋白的不同相互作用在定位和功能上表现出突触型特异性,Neuroligin-3突触定位的特异性仍然未知.
    方法:我们在敲除动物中验证抗体特异性后,研究了Neuroligin-3在小鼠和人脑样品中跨区域的突触定位。我们提出了一种磷酸特异性Neuroligin抗体,并使用磷酸蛋白质组学,基于细胞的检测,以及子宫内CRISPR/Cas9敲除和基因置换,以鉴定调节Neuroligin-3定位为不同突触类型的机制。
    结果:Neuroligin-3表现出区域依赖性突触特异性,在小鼠和人类中,主要定位在皮质区域的兴奋性突触和大脑皮质下区域的抑制性突触。我们确定了皮质Neuroligin-3在募集到抑制性突触的关键结合位点的特异性磷酸化,而皮质下Neuroligin-3仍未磷酸化。体外,该位点的磷模拟突变破坏了Neuroligin-3与抑制性突触后支架蛋白的关联,卟啉。在体内,位于兴奋性突触后的Neuroligin-3的磷模拟突变体,而磷酸化无效突变体定位于抑制性突触后。
    结论:这些数据揭示了Neuroligin-3突触特异性的一个意想不到的区域特异性模式,以及调节其募集到兴奋性或抑制性突触的磷酸化依赖性机制。这些发现增加了我们对Neuroligin-3如何参与可能影响兴奋和抑制平衡的条件的理解。
    BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown.
    METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types.
    RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses.
    CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触组织蛋白是多方面的分子,可在单个突触水平上协调大脑发育和可塑性的复杂过程。当它们的功能受损时出现的主要脑部疾病证明了它们的重要性。各种组织者家族管理突触的机制是多种多样的,但是汇聚在结构上,函数,和突触的可塑性。因此,突触组织者调节突触如何适应正在进行的活动,确定大脑发育轨迹的过程,对所有形式的认知都至关重要。这里,我们探索突触组织者如何为突触可塑性和相关分子事件设置条件,最终与神经发育和神经精神疾病的行为特征有关。我们还提出了有关突触组织者如何通过整合大脑的纳米级和电路级组织来影响网络功能的核心问题。
    Synapse organizing proteins are multifaceted molecules that coordinate the complex processes of brain development and plasticity at the level of individual synapses. Their importance is demonstrated by the major brain disorders that emerge when their function is compromised. The mechanisms whereby the various families of organizers govern synapses are diverse, but converge on the structure, function, and plasticity of synapses. Therefore, synapse organizers regulate how synapses adapt to ongoing activity, a process central for determining the developmental trajectory of the brain and critical to all forms of cognition. Here, we explore how synapse organizers set the conditions for synaptic plasticity and the associated molecular events, which eventually link to behavioral features of neurodevelopmental and neuropsychiatric disorders. We also propose central questions on how synapse organizers influence network function through integrating nanoscale and circuit-level organization of the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触是一种高度专业化的非对称结构,可在大脑中传输和存储信息。突触前和突触后结构和功能的大小在个体突触水平上很好地协调。例如,大的突触后树突棘具有较大的突触后密度,其表面具有较高的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)数,而并置的突触前末端具有更大的活动区和更高的释放概率。这表明突触前和突触后结构域双向通信以协调突触间隙两侧的特定分子的组装。定位于突触的细胞粘附分子(CAM)形成跨突触间隙的突触蛋白相互作用,并在突触形成和调节中起重要作用。CAM的胞外结构域对于特定的突触形成和功能是必需的。相比之下,胞内结构域是与突触分子结合和信号转导所必需的。因此,CAM对突触的功能和结构起着至关重要的作用。事实上,充分的证据表明,跨突触CAM指示和调节突触前位点的功能。本章重点介绍调节突触前功能的突触蛋白相互作用,强调神经元CAM的作用及其调节的细胞内机制。
    The synapse is a highly specialized asymmetric structure that transmits and stores information in the brain. The size of pre- and postsynaptic structures and function is well coordinated at the individual synapse level. For example, large postsynaptic dendritic spines have a larger postsynaptic density with higher α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) number on their surface, while juxtaposing presynaptic terminals have a larger active zone and higher release probability. This indicates that pre- and postsynaptic domains bidirectionally communicate to coordinate assembly of specific molecules on both sides of the synaptic cleft. Cell adhesion molecules (CAMs) that localize at synapses form transsynaptic protein interactions across the synaptic cleft and play important roles in synapse formation and regulation. The extracellular domain of CAMs is essential for specific synapse formation and function. In contrast, the intracellular domain is necessary for binding with synaptic molecules and signal transduction. Therefore, CAMs play an essential role on synapse function and structure. In fact, ample evidence indicates that transsynaptic CAMs instruct and modulate functions at presynaptic sites. This chapter focuses on transsynaptic protein interactions that regulate presynaptic functions emphasizing the role of neuronal CAMs and the intracellular mechanism of their regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触粘附分子(SAMs)是必不可少的驱动形成,成熟,和神经网络突触连接的可塑性。含有MAM结构域的糖基磷脂酰肌醇锚(MDGA)是一种SAM,可调节跨突触桥的形成,这对神经传递和突触分化至关重要。在最近一期的JBC中,Lee等人。发现MDGA1可以通过采用不同的全局3D构象来控制蛋白质-蛋白质相互作用和突触间隙活性。这种新的分子机制可能适用于调节突触间隙中蛋白质-蛋白质相互作用和纳米级组织的其他SAM。
    Synaptic adhesion molecules (SAMs) are essential for driving the formation, maturation, and plasticity of synaptic connections for neural networks. MAM domain-containing glycosylphosphatidylinositol anchors (MDGAs) are a type of SAM that regulates the formation of trans-synaptic bridges, which are critical for neurotransmission and synaptic differentiation. In a recent issue of the JBC, Lee et al. uncovered that MDGA1 can control protein-protein interactions and synaptic cleft activity by adopting different global 3D conformations. This novel molecular mechanism may be applicable to other SAMs that regulate protein-protein interactions and nanoscale organization in the synaptic cleft.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触特性的规范是神经元电路功能的基础。“终端选择因子”转录因子协调指定细胞类型特定特性的终端基因电池。此外,泛神经元剪接调节因子与指导神经元分化有关。然而,剪接调节因子如何指示特定突触特性的细胞逻辑仍然知之甚少。这里,我们将mRNA靶标的全基因组作图和细胞类型特异性功能缺失研究相结合,以揭示RNA结合蛋白SLM2对海马突触规范的贡献.专注于锥体细胞和生长抑素(SST)阳性GABA能中间神经元,我们发现SLM2优先结合并调节编码突触蛋白的转录本的可变剪接。在没有SLM2的情况下,神经元群体表现出正常的内在特性,但是在海马依赖性记忆任务中存在非细胞自主突触表型和相关缺陷。因此,选择性剪接提供了一个关键的基因调控层,它以跨突触的方式指示神经元连接的规范。
    The specification of synaptic properties is fundamental for the function of neuronal circuits. \"Terminal selector\" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    智力障碍(ID)和自闭症谱系障碍(ASD)是神经发育障碍,已成为主要的临床和社会关注,在人群中患病率为2-3%。在发育的关键时期,神经元的功能和行为经历了显着的延展性,在ID/ASD中被发现受损。人类基因组测序研究揭示了许多与ASD/ID相关的遗传变异,这些变异被许多方法进一步证实。包括许多鼠标和其他型号。这些模型有助于确定ASD/ID发病机理的基本机制,一些研究提出了ASD/ID中的融合分子途径。然而,导致ID/ASD的致病基因及其分子特征的连接机制进展缓慢,阻碍潜在治疗策略的发展。这篇综述讨论了基于现有模型的研究识别大多数ASD/ID的常见分子原因的可能性,这些模型可能使更好的治疗ID/ASD的治疗策略成为可能。我们还回顾了在早期阶段检测ASD/ID的潜在生物标志物,这些生物标志物可能有助于诊断和开始药物治疗。临床试验中对药物失败的担忧,并开发可以应用于与ASD/ID相关的特定突变之外的治疗策略。
    Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    兴奋性突触是由突触组织者的合作作用形成和成熟的,例如Neurexins(Nrxns),神经素(Nlgns),LRRTM,和Cbln1。最近的超分辨率纳米显微镜的发展表明,许多突触组织者,以及谷氨酸受体和谷氨酸释放机制,作为突触内的纳米簇存在。然而,目前尚不清楚这些纳米结构域如何在体内相互作用以组织兴奋性突触。通过将X10扩展显微镜应用于表位标签敲入小鼠,我们发现Cbln1,Nlgn1和LRRTM1共享Nrxn作为一种常见的突触前受体,根据Nrxn形成重叠或分开的纳米结构域,具有或不具有由剪接位点4编码的序列。GluD1、NMDA、AMPA受体受Cbln1、Nlgn1和LRRTM1纳米结构域调控,分别。这些发现表明Nrxns通过Nrxn配体的竞争和协调来正向调节谷氨酸受体的突触后纳米结构。
    Excitatory synapses are formed and matured by the cooperative actions of synaptic organizers, such as neurexins (Nrxns), neuroligins (Nlgns), LRRTMs, and Cbln1. Recent super-resolution nanoscopy developments have revealed that many synaptic organizers, as well as glutamate receptors and glutamate release machinery, exist as nanoclusters within synapses. However, it is unclear how such nanodomains interact with each other to organize excitatory synapses in vivo. By applying X10 expansion microscopy to epitope tag knockin mice, we found that Cbln1, Nlgn1, and LRRTM1, which share Nrxn as a common presynaptic receptor, form overlapping or separate nanodomains depending on Nrxn with or without a sequence encoded by splice site 4. The size and position of glutamate receptor nanodomains of GluD1, NMDA, and AMPA receptors were regulated by Cbln1, Nlgn1, and LRRTM1 nanodomains, respectively. These findings indicate that Nrxns anterogradely regulate the postsynaptic nanoscopic architecture of glutamate receptors through competition and coordination of Nrxn ligands.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号