Neural progenitor

神经祖细胞
  • 文章类型: Journal Article
    背景:神经系统发育的关键步骤涉及神经祖细胞规格和定位的协调控制。脊椎动物中枢神经系统的长期模型假设,瞬时解剖区室-称为神经细胞-具有沿着胚胎前后神经轴定位神经祖细胞的功能。这种神经细胞在胚胎后脑中很明显-包含六个形态上明显的菱形-但其他神经细胞缺乏明确的形态边界,而是由不同的标准定义。例如基因表达模式和移植实验结果的差异。因此,菱形(r)6后面的后脑(CHB)已被可变地提议包含2至5个“伪菱形”,但是缺乏全面的分子数据排除了对这种结构的详细定义。
    方法:我们使用单细胞多体组分析,可以同时表征单个细胞核的基因表达和染色质状态,在发育中的斑马鱼CNS中鉴定和表征CHB祖细胞。
    结果:我们将CHB祖细胞鉴定为转录上不同的群体,它还具有可接近的转录因子结合基序的独特概况,相对于r6和脊髓。这种CHB群体可以细分沿其背腹轴的基础上的分子特征,但是我们没有发现任何分子证据表明它含有多个伪菱形。我们进一步观察到CHB在最早的胚胎阶段与r6密切相关,但随着时间的推移变得更加分歧,它是由独特的基因调控网络定义的。
    结论:我们得出结论,早期CHB代表一个单一的神经区室,不能被分子细分为假菱形,它可能与r6共享胚胎起源。
    BACKGROUND: A key step in nervous system development involves the coordinated control of neural progenitor specification and positioning. A long-standing model for the vertebrate CNS postulates that transient anatomical compartments - known as neuromeres - function to position neural progenitors along the embryonic anteroposterior neuraxis. Such neuromeres are apparent in the embryonic hindbrain - that contains six rhombomeres with morphologically apparent boundaries - but other neuromeres lack clear morphological boundaries and have instead been defined by different criteria, such as differences in gene expression patterns and the outcomes of transplantation experiments. Accordingly, the caudal hindbrain (CHB) posterior to rhombomere (r) 6 has been variably proposed to contain from two to five \'pseudo-rhombomeres\', but the lack of comprehensive molecular data has precluded a detailed definition of such structures.
    METHODS: We used single-cell Multiome analysis, which allows simultaneous characterization of gene expression and chromatin state of individual cell nuclei, to identify and characterize CHB progenitors in the developing zebrafish CNS.
    RESULTS: We identified CHB progenitors as a transcriptionally distinct population, that also possesses a unique profile of accessible transcription factor binding motifs, relative to both r6 and the spinal cord. This CHB population can be subdivided along its dorsoventral axis based on molecular characteristics, but we do not find any molecular evidence that it contains multiple pseudo-rhombomeres. We further observe that the CHB is closely related to r6 at the earliest embryonic stages, but becomes more divergent over time, and that it is defined by a unique gene regulatory network.
    CONCLUSIONS: We conclude that the early CHB represents a single neuromere compartment that cannot be molecularly subdivided into pseudo-rhombomeres and that it may share an embryonic origin with r6.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    尽管对老鼠进行了深入的研究,新皮质神经发生的转录调控在人类和非人灵长类动物中仍然受到限制。已知恒河猴的皮质发育可以概括人类皮质发育的多个方面,包括神经干细胞的复杂组成和较厚的膜上层。为了表征负责从干细胞分化为神经元的转录组编程的时间变化,我们在E40,E50,E70,E80和E90采样了恒河猴的顶叶,涵盖了产前神经发生的整个时期。单细胞RNA测序产生了恒河猴新皮质发育顶叶的转录组学图谱。在不同发育阶段出现的不同细胞类型和神经干细胞的鉴定揭示了从干细胞到神经元的末端分叉轨迹。值得注意的是,深层神经元出现在神经发生的早期阶段,而上层神经元出现较晚。虽然这些不同的谱系在他们的分化程序中显示出重叠,细胞命运是在有丝分裂后确定的。从心室radial胶质细胞(vRGs)到外radial胶质细胞(oRGs)的轨迹分析揭示了动态基因表达谱,并确定了BMP的差异激活,FGF,vRGs和oRGs之间的WNT信号通路。这些结果提供了基因表达的时间模式的全面概述,这些模式导致了新皮质层形成过程中放射状神经胶质祖细胞的不同命运。
    Despite intense research on mice, the transcriptional regulation of neocortical neurogenesis remains limited in humans and non-human primates. Cortical development in rhesus macaque is known to recapitulate multiple facets of cortical development in humans, including the complex composition of neural stem cells and the thicker supragranular layer. To characterize temporal shifts in transcriptomic programming responsible for differentiation from stem cells to neurons, we sampled parietal lobes of rhesus macaque at E40, E50, E70, E80, and E90, spanning the full period of prenatal neurogenesis. Single-cell RNA sequencing produced a transcriptomic atlas of developing parietal lobe in rhesus macaque neocortex. Identification of distinct cell types and neural stem cells emerging in different developmental stages revealed a terminally bifurcating trajectory from stem cells to neurons. Notably, deep-layer neurons appear in the early stages of neurogenesis, while upper-layer neurons appear later. While these different lineages show overlap in their differentiation program, cell fates are determined post-mitotically. Trajectories analysis from ventricular radial glia (vRGs) to outer radial glia (oRGs) revealed dynamic gene expression profiles and identified differential activation of BMP, FGF, and WNT signaling pathways between vRGs and oRGs. These results provide a comprehensive overview of the temporal patterns of gene expression leading to different fates of radial glial progenitors during neocortex layer formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    中枢神经系统(CNS)的复杂功能在很大程度上受到神经细胞和血管之间适当相互作用的支持。越来越多的证据表明,神经元和神经胶质细胞支持血管的形成,反过来,充当这些细胞类型的迁移支架。神经祖细胞也参与血管形成的调节。神经细胞和血管之间的相互作用由几种趋化因子控制,生长因子,细胞外基质,和粘附分子如整合素。最近的研究表明,沿着血管新迁移的细胞类型排斥其他先前存在的迁移细胞类型,导致它们脱离血管.在这次审查中,我们讨论血管形成和细胞迁移,特别是在发展过程中。此外,我们讨论了血管与神经元和神经胶质细胞之间的串扰与神经发育障碍的关系。
    The sophisticated function of the central nervous system (CNS) is largely supported by proper interactions between neural cells and blood vessels. Accumulating evidence has demonstrated that neurons and glial cells support the formation of blood vessels, which in turn, act as migratory scaffolds for these cell types. Neural progenitors are also involved in the regulation of blood vessel formation. This mutual interaction between neural cells and blood vessels is elegantly controlled by several chemokines, growth factors, extracellular matrix, and adhesion molecules such as integrins. Recent research has revealed that newly migrating cell types along blood vessels repel other preexisting migrating cell types, causing them to detach from the blood vessels. In this review, we discuss vascular formation and cell migration, particularly during development. Moreover, we discuss how the crosstalk between blood vessels and neurons and glial cells could be related to neurodevelopmental disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    各种各样的CreERT2驱动系可用于小鼠大脑中成年神经元的遗传操作。这些工具有助于研究命运的潜力,迁移,电路集成,和支持终身神经发生的干细胞形态。尽管有丰富的工具,用于电路和行为研究的成年神经元的遗传操作受到许多靶向早期祖细胞的驱动系的特异性差以及对神经元成熟后期具有选择性的系的难以接近性的限制。我们试图通过创建针对内源性小鼠doublecortin基因座的新CreERT2驱动系作为命运指定的神经母细胞和未成熟神经元的标记来解决这些限制。我们的新模型将T2A-CreERT2盒放置在X染色体上Dcx编码序列的下游,允许Dcx和CreERT2蛋白在该基因的内源性时空模式中表达。我们证明了新的小鼠品系在新生小鼠和已知的成年动物的神经源性小生境中在整个大脑中驱动Cre依赖性报道分子的表达。该生产线已存放在杰克逊实验室,应为针对命运受限的神经元前体的研究提供可访问的工具。
    A wide variety of CreERT2 driver lines are available for genetic manipulation of adult-born neurons in the mouse brain. These tools have been instrumental in studying fate potential, migration, circuit integration, and morphology of the stem cells supporting lifelong neurogenesis. Despite a wealth of tools, genetic manipulation of adult-born neurons for circuit and behavioral studies has been limited by poor specificity of many driver lines targeting early progenitor cells and by the inaccessibility of lines selective for later stages of neuronal maturation. We sought to address these limitations by creating a new CreERT2 driver line targeted to the endogenous mouse doublecortin locus as a marker of fate-specified neuroblasts and immature neurons. Our new model places a T2A-CreERT2 cassette immediately downstream of the Dcx coding sequence on the X chromosome, allowing expression of both Dcx and CreERT2 proteins in the endogenous spatiotemporal pattern for this gene. We demonstrate that the new mouse line drives expression of a Cre-dependent reporter throughout the brain in neonatal mice and in known neurogenic niches of adult animals. The line has been deposited with the Jackson Laboratory and should provide an accessible tool for studies targeting fate-restricted neuronal precursors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:散发性克雅氏病(sCJD),人类最常见的朊病毒病,是一种致命的神经退行性疾病,目前没有治疗选择。干细胞治疗神经退行性疾病正在成为一种可能的治疗选择。然而,虽然有一些其他神经退行性疾病如帕金森病的临床试验,到目前为止,朊病毒病细胞治疗的研究仅限于动物模型。
    方法:这里,我们使用一种新的方法,利用人脑类器官模型研究sCJD细胞治疗.脑类器官可以感染sCJD病毒,使我们能够评估神经前体细胞(NPC)治疗如何影响sCJD的进展。在sCJD或模拟感染90天后,类器官要么用NPC接种,要么不接种,并监测细胞组成变化,感染后180天的朊病毒感染参数和神经电生理功能。
    结果:我们的结果显示,NPCs整合到类器官中,导致神经元标记物的增加和细胞信号的变化,而与sCJD感染无关。虽然小,但意义重大,在接受NPCs的CJD感染的类器官中观察到蛋白酶抗性PrP沉积的减少,其他疾病相关参数变化最小.然而,NPCs对感染后的类器官功能有有益的影响.sCJD感染导致神经元尖峰率和平均突发尖峰率降低,指示动作电位降低。NPC播种将这些电生理参数恢复到未感染的对照水平。
    结论:结合以前的动物研究,我们的结果支持细胞疗法可能对人类朊病毒疾病的治疗有一定的功能益处.
    Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is a fatal neurodegenerative disease with currently no treatment options. Stem cell therapy for neurodegenerative diseases is emerging as a possible treatment option. However, while there are a few clinical trials for other neurodegenerative disorders such as Parkinson\'s disease, prion disease cell therapy research has so far been confined to animal models.
    Here, we use a novel approach to study cell therapies in sCJD using a human cerebral organoid model. Cerebral organoids can be infected with sCJD prions allowing us to assess how neural precursor cell (NPC) therapy impacts the progression of sCJD. After 90 days of sCJD or mock infection, organoids were either seeded with NPCs or left unseeded and monitored for cellular composition changes, prion infection parameters and neuroelectrophysiological function at 180 days post-infection.
    Our results showed NPCs integrated into organoids leading to an increase in neuronal markers and changes in cell signaling irrespective of sCJD infection. Although a small, but significant, decrease in protease-resistant PrP deposition was observed in the CJD-infected organoids that received the NPCs, other disease-associated parameters showed minimal changes. However, the NPCs had a beneficial impact on organoid function following infection. sCJD infection caused reduction in neuronal spike rate and mean burst spike rate, indicative of reduced action potentials. NPC seeding restored these electrophysiological parameters to the uninfected control level.
    Together with the previous animal studies, our results support that cell therapy may have some functional benefit for the treatment of human prion diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    菱形用于在胚胎后脑中定位神经祖细胞,从而确保适当的神经回路形成,但是单个菱形的分子身份及其形成机制尚未完全确定。在这里,我们首次在斑马鱼中应用scMultiome分析以分子解析所有菱形。我们发现菱形在10hpf(原肠胚形成结束)和13hpf(早期分割)之间在分子上变得不同。虽然胚胎后脑暂时含有交替的奇数和偶数型菱形,我们的scMultiome分析未检测到早期后脑中广泛的奇数和偶数分子特征.相反,我们发现每个菱形都显示出独特的基因表达和染色质谱。在出现明显的菱形之前,我们检测到三个后脑祖细胞簇(PHPDs),它们与后脑原基中最早的视觉观察到的节段相关,代表前瞻性菱形r2/r3(可能包括r1),r4和r5/r6。我们进一步发现,PHPD响应于Fgf和RA形态发生素而形成,并且单个PHPD细胞共表达多个成熟菱形的标记。我们建议PHPD包含混合身份祖细胞,并且将其细分为单个菱形需要解决混合的转录和染色质状态。
    Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form has not been fully established. Here, we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the embryonic hindbrain transiently contains alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even molecular characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium that represent prospective rhombomere r2/r3 (possibly including r1), r4, and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual rhombomeres requires the resolution of mixed transcription and chromatin states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    不受苯并咪唑1B(BUB1B)抑制的镶嵌杂色非整倍性(MVA)相关基因出芽编码BUBR1,BUBR1是纺锤体组装检查点复合物的核心成员,可确保动粒-纺锤体的附着以实现忠实的染色体分离。人类BUB1B突变及其在小鼠中的缺失导致小头畸形。在小鼠中没有BubR1的情况下,大量细胞死亡在神经发生期间减少皮质细胞。然而,引发细胞死亡的分子和细胞机制尚不清楚。在这项研究中,我们在小鼠模型中对有丝分裂BubR1缺陷型神经祖细胞进行了三维成像分析,以显示严重的染色体分离缺陷和结构异常.染色体缺陷和伴随的DNA损伤导致BubR1突变体中的P53活化和凋亡细胞死亡。为了测试P53细胞死亡途径是否导致皮质细胞丢失,我们在BubR1缺陷的皮质中共同删除了Trp53。值得注意的是,我们发现在缺乏P53的双突变体中残留的凋亡细胞死亡,提示P53非依赖性凋亡.此外,双突变小鼠中皮质大小和皮质神经元数量的最小挽救表明,在缺乏P53的情况下,替代死亡机制的程度令人信服.这项研究证明了MVA患者小头畸形的潜在致病机制,并揭示了即使在P53死亡途径失效时也存在消除不适合细胞的强大手段。
    The mosaic variegated aneuploidy (MVA)-associated gene Budding Uninhibited by Benzimidazole 1B (BUB1B) encodes BUBR1, a core member of the spindle assembly checkpoint complex that ensures kinetochore-spindle attachment for faithful chromosome segregation. BUB1B mutation in humans and its deletion in mice cause microcephaly. In the absence of BubR1 in mice, massive cell death reduces cortical cells during neurogenesis. However, the molecular and cellular mechanisms triggering cell death are unknown. In this study, we performed three-dimensional imaging analysis of mitotic BubR1-deficient neural progenitors in a murine model to show profound chromosomal segregation defects and structural abnormalities. Chromosomal defects and accompanying DNA damage result in P53 activation and apoptotic cell death in BubR1 mutants. To test whether the P53 cell death pathway is responsible for cortical cell loss, we co-deleted Trp53 in BubR1-deficient cortices. Remarkably, we discovered that residual apoptotic cell death remains in double mutants lacking P53, suggesting P53-independent apoptosis. Furthermore, the minimal rescue of cortical size and cortical neuron numbers in double mutant mice suggests the compelling extent of alternative death mechanisms in the absence of P53. This study demonstrates a potential pathogenic mechanism for microcephaly in MVA patients and uncovers the existence of powerful means of eliminating unfit cells even when the P53 death pathway is disabled.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类视网膜类器官移植可能是一种治疗退行性视网膜疾病的方法。受体视网膜如何调节存活,成熟,移植的类器官细胞的增殖是未知的。我们将人类视网膜类器官来源的细胞移植到光感受器缺陷小鼠中,并与时间匹配的培养的视网膜类器官一起进行组织学和单细胞RNA测序。出乎意料的是,我们观察到人类细胞迁移到所有受体视网膜层中,并经过很长的距离。使用公正的方法,我们将这些细胞鉴定为星形胶质细胞和脑/脊髓样神经前体,在阶段匹配的培养的类器官中不存在或罕见.相比之下,视网膜祖细胞衍生的棒和锥保留在视网膜下间隙,比培养的对照成熟更快。这些数据表明,受体微环境促进了移植的光感受器的成熟,同时诱导或促进了通常不源自视网膜祖细胞的迁移细胞群的存活。这些发现对于潜在的基于细胞的视网膜疾病治疗具有重要意义。
    Human retinal organoid transplantation could potentially be a treatment for degenerative retinal diseases. How the recipient retina regulates the survival, maturation, and proliferation of transplanted organoid cells is unknown. We transplanted human retinal organoid-derived cells into photoreceptor-deficient mice and conducted histology and single-cell RNA sequencing alongside time-matched cultured retinal organoids. Unexpectedly, we observed human cells that migrated into all recipient retinal layers and traveled long distances. Using an unbiased approach, we identified these cells as astrocytes and brain/spinal cord-like neural precursors that were absent or rare in stage-matched cultured organoids. In contrast, retinal progenitor-derived rods and cones remained in the subretinal space, maturing more rapidly than those in the cultured controls. These data suggest that recipient microenvironment promotes the maturation of transplanted photoreceptors while inducing or facilitating the survival of migratory cell populations that are not normally derived from retinal progenitors. These findings have important implications for potential cell-based treatments of retinal diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转录因子(TFs)调节基因程序,从而控制不同的细胞过程和细胞状态。要全面了解TFs及其控制的程序,我们创建了所有注释的人类TF剪接同工型(>3,500)的条形码文库,并将其应用于构建TFAtlas图,以单细胞分辨率过表达每个TF的人胚胎干细胞(hESC)的表达谱。我们将TF诱导的表达谱映射到参考细胞类型,并验证了候选TF用于生成不同细胞类型,跨越所有三个胚层和滋养层。具有文库子集的靶向筛选允许我们创建定制的细胞疾病模型并整合mRNA表达和染色质可及性数据以识别下游调节因子。最后,我们通过开发和验证预测TFs组合的策略来表征组合TF过表达的效果,所述TFs产生与参考细胞类型相匹配的靶表达谱以加速细胞工程的努力.
    Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号