Neural coding

  • 文章类型: Journal Article
    饮食行为受味觉整合的影响,嗅觉,和体感信号,这些都有助于感知味道。尽管广泛的研究已经探索了味觉皮层(GC)中味觉的神经相关性,人们对其在热信息编码中的作用知之甚少。本研究调查了与口腔体感皮层相比,GC神经元对口腔热和化学感觉信号的编码。在这项研究中,我们记录了小鼠口腔体感皮层900多个GC神经元和500个神经元的尖峰活动,这些神经元可以在不同的非伤害性温度下自由舔小滴味觉刺激或去离子水。然后,我们开发并使用了一种基于贝叶斯的分析技术,以根据舔周期内的刺速和相位时间来评估神经分类分数。我们的结果表明,GC神经元主要依赖于速率信息,尽管需要相位信息来实现最大精度,有效地编码化感和热感信号。GC神经元能有效区分热刺激,擅长区分两个大的对比(14°与36°C)和,虽然效果较差,更微妙的温度差异。最后,直接比较两个皮层之间的热感信号的解码精度表明,虽然体感皮层显示出更高的整体精度,GC仍然编码重要的热感信息。这些发现突出了GC在加工味道和温度方面的双重作用,强调在未来的口味加工研究中考虑温度的重要性。
    Eating behaviors are influenced by the integration of gustatory, olfactory, and somatosensory signals, which all contribute to the perception of flavor. Although extensive research has explored the neural correlates of taste in the gustatory cortex (GC), less is known about its role in encoding thermal information. This study investigates the encoding of oral thermal and chemosensory signals by GC neurons compared to the oral somatosensory cortex. In this study, we recorded the spiking activity of more than 900 GC neurons and 500 neurons from the oral somatosensory cortex in mice allowed to freely lick small drops of gustatory stimuli or deionized water at varying non-nociceptive temperatures. We then developed and used a Bayesian-based analysis technique to assess neural classification scores based on spike rate and phase timing within the lick cycle. Our results indicate that GC neurons rely predominantly on rate information, although phase information is needed to achieve maximum accuracy, to effectively encode both chemosensory and thermosensory signals. GC neurons can effectively differentiate between thermal stimuli, excelling in distinguishing both large contrasts (14°C vs. 36°C) and, although less effectively, more subtle temperature differences. Finally, a direct comparison of the decoding accuracy of thermosensory signals between the two cortices reveals that while the somatosensory cortex showed higher overall accuracy, the GC still encodes significant thermosensory information. These findings highlight the GC\'s dual role in processing taste and temperature, emphasizing the importance of considering temperature in future studies of taste processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于越来越多的研究难以复制,生物科学中的典型统计实践越来越受到质疑,其中许多与零显著性假设测试设计和p值解释的相对困难有关。贝叶斯推理,代表了一种完全不同的假设检验方法,由于易于解释和明确声明先前的假设,因此获得了新的兴趣,作为传统的零意义假设测试的潜在替代或补充。贝叶斯模型在数学上比等效频率论方法更复杂,从历史上看,它们的应用仅限于简化的分析案例。然而,现在,随着计算能力指数级增长的概率分布抽样工具的出现,允许在任何数据分布下进行快速和可靠的推理。在这里,我们介绍了在大鼠电生理和计算建模数据中的神经科学研究背景下使用贝叶斯推理的实用教程。我们首先从贝叶斯规则和推理的直观讨论开始,然后使用来自各种神经科学研究的数据制定基于贝叶斯的回归和ANOVA模型。我们展示了贝叶斯推理如何导致易于解释的数据分析,同时提供了一个开源工具箱来促进贝叶斯工具的使用。重要性陈述贝叶斯推理已经重新受到关注,作为零显著性假设测试的可解释性的替代方法,将先验知识纳入当前推理的能力,和稳健的模型比较范例。尽管有这种新的兴趣,贝叶斯推理的讨论经常被贝叶斯推理过程中过度的数学复杂性和误解所混淆。在这篇文章中,我们的目标是通过使用啮齿动物听觉回路的单单元和多单元记录提供实用的方法学演练,并附有记录良好且用户友好的工具包,其中包含神经科学中常见的回归和ANOVA统计模型,从而使神经科学家能够采用贝叶斯统计推断。
    Typical statistical practices in the biological sciences have been increasingly called into question due to difficulties in the replication of an increasing number of studies, many of which are confounded by the relative difficulty of null significance hypothesis testing designs and interpretation of p-values. Bayesian inference, representing a fundamentally different approach to hypothesis testing, is receiving renewed interest as a potential alternative or complement to traditional null significance hypothesis testing due to its ease of interpretation and explicit declarations of prior assumptions. Bayesian models are more mathematically complex than equivalent frequentist approaches, which have historically limited applications to simplified analysis cases. However, the advent of probability distribution sampling tools with exponential increases in computational power now allows for quick and robust inference under any distribution of data. Here we present a practical tutorial on the use of Bayesian inference in the context of neuroscientific studies in both rat electrophysiological and computational modeling data. We first start with an intuitive discussion of Bayes\' rule and inference followed by the formulation of Bayesian-based regression and ANOVA models using data from a variety of neuroscientific studies. We show how Bayesian inference leads to easily interpretable analysis of data while providing an open-source toolbox to facilitate the use of Bayesian tools.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的记忆帮助我们规划未来。在某些情况下,我们用记忆来重复过去导致更好结果的选择。这些记忆引导决策的成功取决于海马和内侧前额叶皮层之间的密切相互作用。在其他情况下,我们需要利用我们的记忆来推断现在和过去的情况之间隐藏的联系,以根据预期的结果决定行动的最佳选择。我们最近的研究通过监测大鼠内侧前额叶皮质和海马的神经活动,调查了这种推理决策的神经基础。我们确定了几种神经活动模式,表明清醒记忆痕迹重新激活和多个神经元之间功能连接的重建。我们还发现,当大鼠回忆起过去的事件时,这些模式与正在进行的海马活动同时发生,但当他们计划新的适应性行动时却没有发生。这里,我们讨论了这些计算特性如何有助于推理决策的成功,并提出了一个关于内侧前额叶皮层如何根据其反映过去还是展望未来而改变其与海马体相互作用的工作模型.
    Our memories help us plan for the future. In some cases, we use memories to repeat the choices that led to preferable outcomes in the past. The success of these memory-guided decisions depends on close interactions between the hippocampus and medial prefrontal cortex. In other cases, we need to use our memories to deduce hidden connections between the present and past situations to decide the best choice of action based on the expected outcome. Our recent study investigated neural underpinnings of such inferential decisions by monitoring neural activity in the medial prefrontal cortex and hippocampus in rats. We identified several neural activity patterns indicating awake memory trace reactivation and restructuring of functional connectivity among multiple neurons. We also found that these patterns occurred concurrently with the ongoing hippocampal activity when rats recalled past events but not when they planned new adaptive actions. Here, we discussed how these computational properties might contribute to success in inferential decision-making and propose a working model on how the medial prefrontal cortex changes its interaction with the hippocampus depending on whether it reflects on the past or looks into the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经刺激方案越来越多地用作治疗干预措施,包括脑损伤.除了神经元的直接激活,这些刺激方案也可能对这些神经元的突触输出产生下游影响。众所周知,突触连接强度的改变(长期增强,LTP;长期抑郁,LTD)对用于诱导的刺激频率敏感,然而,关于刺激的时间模式对下游突触可塑性的贡献知之甚少,这可能是由神经刺激在受伤的大脑中引起的。我们探索了正常大脑皮层和轻度创伤性脑损伤(mTBI)后神经刺激的时间模式和频率的相互作用,告知治疗以加强或削弱受伤大脑的神经回路,以及更好地了解这些因素在正常大脑可塑性中的作用。单个神经元中诱发的突触后电位(PSP)的全细胞(WC)膜片钳记录,以及场电位(FP)记录,由视觉皮层的2/3层制成,以响应第4层的刺激,在来自对照的急性切片中(幼稚),假手术,和mTBI大鼠。我们比较了不同刺激方案诱导的突触可塑性,每个由特定频率(1Hz,10Hz,或100Hz),连续性(连续或不连续),和时间模式(完全规则,有点不规则,或高度不规则)。在单个神经元水平,当在1Hz或10Hz下使用高度不规则的刺激方案时,可塑性结果出现了巨大差异,在控件和Shams中生产整体LTD,但mTBI后总体LTP强劲。与单个神经元的结果一致,同时FP记录的可塑性结果相似,表明我们的结果推广到比单独的WC记录可以采样的更大规模的突触网络。除了在可塑性结果之间的差异控制(幼稚或假)和受伤的大脑,刺激过程中发生的突触反应变化的动力学可以预测最终的可塑性结果.我们的结果表明,刺激的时间模式在大脑皮层中诱导的突触可塑性的极性和幅度中起作用,同时突出了正常和受伤的大脑反应之间的差异。此外,这些结果可能有助于优化神经刺激疗法以治疗mTBI和其他脑部疾病,除了为正常大脑的下游可塑性信号机制提供新的见解。
    Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons\' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    有效编码的原理认为,感觉皮层网络旨在以最小的代谢成本编码最大的感觉信息。尽管有效编码在神经科学中具有重要影响,目前尚不清楚神经网络活动的基本经验特性是否可以完全基于这一规范原则来解释。这里,我们严格推导出结构,编码,刺激神经元的兴奋性-抑制性递归网络的生物物理和动力学特性,这些特性直接来自于将网络的瞬时损失函数和时间平均性能度量最小化,从而实现了有效的编码。最佳网络具有生物学上合理的生物物理特征,包括现实的整合和激发动态,尖峰触发的自适应,和调节代谢成本的非刺激特异性兴奋性外部输入。有效的网络在神经元之间具有兴奋性-抑制性循环连通性,具有类似的刺激调谐,可实现特定于特征的竞争,类似于最近在视觉皮层中发现的。具有非结构化连通性的网络无法达到相当的编码效率水平。最佳生物物理参数包括兴奋性神经元与抑制性神经元的比率为4:1,平均抑制性与抑制性神经元的比率为3:1。与皮质感觉网络紧密匹配的兴奋性到抑制性连通性。高效的网络具有生物学上合理的尖峰动态,具有紧密的瞬时E-I平衡,使它们能够实现在多个时间尺度上变化的外部刺激的有效编码。一起,这些结果解释了如何在皮层网络中实现高效编码,并表明生物神经网络的关键特性可以通过高效编码来解释.
    The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we rigorously derive the structural, coding, biophysical and dynamical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. The optimal network has biologically-plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-stimulus-specific excitatory external input regulating metabolic cost. The efficient network has excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implementing feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal biophysical parameters include 4 to 1 ratio of excitatory vs inhibitory neurons and 3 to 1 ratio of mean inhibitory-to-inhibitory vs. excitatory-to-inhibitory connectivity that closely match those of cortical sensory networks. The efficient network has biologically-plausible spiking dynamics, with a tight instantaneous E-I balance that makes them capable to achieve efficient coding of external stimuli varying over multiple time scales. Together, these results explain how efficient coding may be implemented in cortical networks and suggests that key properties of biological neural networks may be accounted for by efficient coding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经科学的一个主要挑战是在看似杂乱无章的神经活动中识别结构。不同类型的结构具有不同的计算含义,可以帮助神经科学家了解特定大脑区域的功能作用。这里,我们概述了一个统一的方法来表征结构通过检查代表性的几何结构和模块化属性的记录活动,并表明,一个类似的方法也可以揭示结构的连通性。我们首先建立一个通用框架,用于确定活动和连通性中的几何形状和模块化,并将这些属性与网络执行的计算相关联。然后,我们使用此框架来回顾在执行三类计算的模型网络的最新研究中发现的结构类型。
    One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    突触优先响应具有很大程度的异质性的特定时间活动模式,这些异质性非正式或默契地分为类别。然而,此类类别的确切数量和属性尚不清楚。它们是否存在于连续体中,如果是,什么时候适合将连续体划分为功能区域?在谷氨酸能皮质连接的大型数据集中,我们执行基于模型的表征来推断突触动力学功能不同亚型的数量和特征.在啮齿动物数据中,我们发现了5个与转基因相关亚型部分收敛的簇。引人注目的是,相同的聚类方法在人类数据中的应用推断了高度相似的聚类数量,支持稳定的聚类。这种细致入微的功能亚型词典塑造了皮质突触动力学的异质性,并为大脑中信息传递的基本基序提供了透镜。
    Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model-based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们研究如何在神经活动振荡模型的动态特征中表示刺激信息,该模型的活动可以通过类似于工作记忆(WM)中涉及的信号的输入来调节。我们开发了一个神经场模型,调谐到振荡不稳定性附近,其中类似WM的输入可以调制振荡的频率和幅度。我们的神经场模型具有类似空间的域,其中优先针对该域上的点-刺激特征的输入将引起特征特定的活动变化。这些特定于特征的活动变化会影响尖峰的平均速率和尖峰活动与全局场振荡的相对时间-尖峰活动的相位。从这两个动态特征中,我们定义了一个尖峰速率码和一个振荡相位码。我们使用信息理论分析来评估这两个代码的性能,以区分刺激特征。我们表明,全局WM输入调制可以增强相位码辨别,同时降低码率码辨别。此外,我们发现相位码的性能大约比相同模型解定义的速率码的性能大两个数量级。我们模型的结果应用于大脑的感觉区域,前额区域向其发送反映WM内容的输入。已经建立了对感觉区域的这些WM输入,以引起与我们的模型相似的振荡变化。我们的模型结果表明了一种机制,通过该机制,WM信号可以增强振荡活动中表示的感觉信息,而不是基于平均速率活动的相对较弱的表示。
    We study how stimulus information can be represented in the dynamical signatures of an oscillatory model of neural activity-a model whose activity can be modulated by input akin to signals involved in working memory (WM). We developed a neural field model, tuned near an oscillatory instability, in which the WM-like input can modulate the frequency and amplitude of the oscillation. Our neural field model has a spatial-like domain in which an input that preferentially targets a point-a stimulus feature-on the domain will induce feature-specific activity changes. These feature-specific activity changes affect both the mean rate of spikes and the relative timing of spiking activity to the global field oscillation-the phase of the spiking activity. From these two dynamical signatures, we define both a spike rate code and an oscillatory phase code. We assess the performance of these two codes to discriminate stimulus features using an information-theoretic analysis. We show that global WM input modulations can enhance phase code discrimination while simultaneously reducing rate code discrimination. Moreover, we find that the phase code performance is roughly two orders of magnitude larger than that of the rate code defined for the same model solutions. The results of our model have applications to sensory areas of the brain, to which prefrontal areas send inputs reflecting the content of WM. These WM inputs to sensory areas have been established to induce oscillatory changes similar to our model. Our model results suggest a mechanism by which WM signals may enhance sensory information represented in oscillatory activity beyond the comparatively weak representations based on the mean rate activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑机接口(BCI)用户在中枢神经系统中产生的脑信号模式与BCI范式和神经编码密切相关。在BCI系统中,BCI范例和神经编码是BCI研究的关键要素。然而,迄今为止,很少有参考文献清晰系统地阐述BCI范式的定义和设计原则以及BCI神经编码的定义和建模原则。因此,阐述了这些内容,并介绍了现有的主要BCI范式和神经编码。最后,讨论了BCI范式和神经编码面临的挑战和未来的研究方向,包括以用户为中心的BCI范例和神经编码的设计和评估,彻底改变了传统的BCI范式,突破现有脑信号采集技术,将BCI技术与先进的AI技术相结合,提高脑信号解码性能。预计该评论将激发BCI范式和神经编码的创新研究和开发。
    Brain signal patterns generated in the central nervous system of brain-computer interface (BCI) users are closely related to BCI paradigms and neural coding. In BCI systems, BCI paradigms and neural coding are critical elements for BCI research. However, so far there have been few references that clearly and systematically elaborated on the definition and design principles of the BCI paradigm as well as the definition and modeling principles of BCI neural coding. Therefore, these contents are expounded and the existing main BCI paradigms and neural coding are introduced in the review. Finally, the challenges and future research directions of BCI paradigm and neural coding were discussed, including user-centered design and evaluation for BCI paradigms and neural coding, revolutionizing the traditional BCI paradigms, breaking through the existing techniques for collecting brain signals and combining BCI technology with advanced AI technology to improve brain signal decoding performance. It is expected that the review will inspire innovative research and development of the BCI paradigm and neural coding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号