Neural Inhibition

神经抑制
  • 文章类型: Journal Article
    配对脉冲经颅磁刺激是研究运动皮层抑制机制的有价值的工具。我们最近证明了它在视觉皮层中测量皮层抑制的用途,使用一种方法,参与者追踪刺激引起的枕骨皮质的磷大小。这里,我们调查了原发性视皮层抑制的年龄相关差异,以及原发性视皮层抑制与同一区域局部GABA之间的关系,使用磁共振波谱估计。GABA+估计有28名年轻人(18至28岁)和47名老年人(65至84岁);一个子集(19名年轻人,18岁以上)还完成了配对脉冲经颅磁刺激会话,评估视觉皮层抑制。老年人的成对脉冲经颅磁刺激抑制作用明显较低。未校正的GABA+在初级视觉皮层中也显著低于老年人,而针对磁共振波谱体素的组织组成进行校正的GABA测量值随年龄变化而不变。此外,双脉冲经颅磁刺激测量的抑制和磁共振波谱测量的组织校正的GABA+显著正相关.这些发现与视觉皮层皮层抑制的年龄相关下降相一致,并表明视觉皮层中的成对脉冲经颅磁刺激效应是由GABA能机制驱动的。正如在运动皮层中所证明的那样。
    Paired-pulse transcranial magnetic stimulation is a valuable tool for investigating inhibitory mechanisms in motor cortex. We recently demonstrated its use in measuring cortical inhibition in visual cortex, using an approach in which participants trace the size of phosphenes elicited by stimulation to occipital cortex. Here, we investigate age-related differences in primary visual cortical inhibition and the relationship between primary visual cortical inhibition and local GABA+ in the same region, estimated using magnetic resonance spectroscopy. GABA+ was estimated in 28 young (18 to 28 years) and 47 older adults (65 to 84 years); a subset (19 young, 18 older) also completed a paired-pulse transcranial magnetic stimulation session, which assessed visual cortical inhibition. The paired-pulse transcranial magnetic stimulation measure of inhibition was significantly lower in older adults. Uncorrected GABA+ in primary visual cortex was also significantly lower in older adults, while measures of GABA+ that were corrected for the tissue composition of the magnetic resonance spectroscopy voxel were unchanged with age. Furthermore, paired-pulse transcranial magnetic stimulation-measured inhibition and magnetic resonance spectroscopy-measured tissue-corrected GABA+ were significantly positively correlated. These findings are consistent with an age-related decline in cortical inhibition in visual cortex and suggest paired-pulse transcranial magnetic stimulation effects in visual cortex are driven by GABAergic mechanisms, as has been demonstrated in motor cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    哺乳动物嗅球(OB)中的抑制性回路会随着嗅觉信息从周围受体传播到下游皮质而动态地重新格式化嗅觉信息。为了深入了解特定的OB中间神经元类型如何支持这种感觉处理,我们检查了兴奋性二尖瓣和簇绒细胞(MTC)之间的统一突触相互作用,OB投影神经元,和使用急性小鼠脑切片中的成对和四组全细胞记录的保守的无轴突外部丛状层中间神经元(EPL-INs)。生理学,形态学,神经化学,和突触分析将EPL-INs分为不同的亚型,并揭示表达小白蛋白的快速尖峰EPL-INs(FSIs)以释放能力的树突状神经支配MTC,并以突触方式引爆以介导快速,短潜伏期复发和侧向抑制。稀疏MTC同步超早期增加了这种高保真抑制,而感觉传入激活与单细胞沉默相结合表明,单个FSI占总网络驱动的MTC侧向抑制的很大一部分。因此,通过爆炸驱动的高保真外围抑制,可以有力地改变OB输出。
    Inhibitory circuits in the mammalian olfactory bulb (OB) dynamically reformat olfactory information as it propagates from peripheral receptors to downstream cortex. To gain mechanistic insight into how specific OB interneuron types support this sensory processing, we examine unitary synaptic interactions between excitatory mitral and tufted cells (MTCs), the OB projection neurons, and a conserved population of anaxonic external plexiform layer interneurons (EPL-INs) using pair and quartet whole-cell recordings in acute mouse brain slices. Physiological, morphological, neurochemical, and synaptic analyses divide EPL-INs into distinct subtypes and reveal that parvalbumin-expressing fast-spiking EPL-INs (FSIs) perisomatically innervate MTCs with release-competent dendrites and synaptically detonate to mediate fast, short-latency recurrent and lateral inhibition. Sparse MTC synchronization supralinearly increases this high-fidelity inhibition, while sensory afferent activation combined with single-cell silencing reveals that individual FSIs account for a substantial fraction of total network-driven MTC lateral inhibition. OB output is thus powerfully shaped by detonation-driven high-fidelity perisomatic inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:卵巢激素影响重复经颅磁刺激(rTMS)诱导的短期可塑性倾向。雌二醇似乎增强神经可塑性的倾向。目前尚不清楚孕酮如何影响rTMS诱导的短期可塑性。
    目的:本研究调查了月经周期的黄体期与卵泡期是否影响间歇性theta爆发刺激(iTBS)诱导的短期可塑性。我们测试了以下假设:iTBS会在卵泡期增加运动诱发电位(MEP)。Further,我们探讨了黄体期对iTBS诱导的神经可塑性的影响。
    方法:29名成年女性参加了一项安慰剂对照研究,该研究在与卵泡期(realiTBS)相对应的单独会话中将真实和假iTBS传递到左侧初级运动皮层,黄体阶段(真正的iTBS),和随机选择的一天(假iTBS)。结果包括通过MEP的幅度测量的皮质脊髓兴奋性和在iTBS(612脉冲)之前和之后从右第一背侧骨间肌肉记录的短间隔皮质内抑制(SICI)。
    结果:在卵泡状态下,MEP振幅在真正的iTBS之后增加。在黄体或假访视期间未观察到MEP振幅的显着变化。iTBS的SICI与月经期无关。
    结论:这些研究结果表明,女性在整个月经周期中经历了iTBS诱导的短期可塑性的不同倾向。这些信息对于设计旨在通过rTMS诱导女性可塑性的研究非常重要。
    BACKGROUND: Ovarian hormones influence the propensity for short-term plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Estradiol appears to enhance the propensity for neural plasticity. It is currently unknown how progesterone influences short-term plasticity induced by rTMS.
    OBJECTIVE: The present research investigates whether the luteal versus follicular phase of the menstrual cycle influence short-term plasticity induced by intermittent theta-burst stimulation (iTBS). We tested the hypothesis that iTBS would increase motor evoked potentials (MEPs) during the follicular phase. Further, we explored the effects of the luteal phase on iTBS-induced neural plasticity.
    METHODS: Twenty-nine adult females participated in a placebo-controlled study that delivered real and sham iTBS to the left primary motor cortex in separate sessions corresponding to the follicular phase (real iTBS), luteal phase (real iTBS), and a randomly selected day (sham iTBS). Outcomes included corticospinal excitability as measured by the amplitude of MEPs and short-interval intracortical inhibition (SICI) recorded from the right first dorsal interosseous muscle before and following iTBS (612 pulses).
    RESULTS: MEP amplitude was increased following real iTBS during the follicular condition. No significant changes in MEP amplitude were observed during the luteal or sham visits. SICI was unchanged by iTBS irrespective of menstrual phase.
    CONCLUSIONS: These findings suggest women experience a variable propensity for iTBS-induced short-term plasticity across the menstrual cycle. This information is important for designing studies aiming to induce plasticity via rTMS in women.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小脑抑制(CBI)是从小脑到初级运动皮质的抑制输出,这在早期运动学习中有所下降。经颅随机噪声刺激(tRNS)是一种非侵入性脑刺激,可诱导脑可塑性变化;然而,据我们所知,小脑tRNS对CBI和运动学习的影响尚未得到研究。在这项研究中,检查小脑TRNS是否降低CBI并改善运动学习,测量瞳孔直径以检查由于tRNS对运动学习的影响而引起的生理变化。34名健康受试者被分配到小脑tRNS组或Sham组。受试者在接受刺激干预的同时,在早期和晚期学习阶段分别进行了十次试验,进行了视觉运动跟踪任务。在学习任务之前测量CBI和运动诱发电位,在早期学习阶段之后,在后期学习阶段之后,在任务期间测量瞳孔直径。两组CBI均无变化。在任何学习阶段均未观察到运动学习率的组差异。两组在后期学习阶段的瞳孔直径均小于早期学习阶段。小脑tRNS被认为不会引起CBI的变化和运动学习的改善,它不影响瞳孔直径。
    Cerebellar brain inhibition (CBI) is an inhibitory output from the cerebellum to the primary motor cortex, which is decreased in early motor learning. Transcranial random noise stimulation (tRNS) is a noninvasive brain stimulation to induce brain plastic changes; however, the effects of cerebellar tRNS on CBI and motor learning have not been investigated yet to our knowledge. In this study, whether cerebellar tRNS decreases CBI and improves motor learning was examined, and pupil diameter was measured to examine physiological changes due to the effect of tRNS on motor learning. Thirty-four healthy subjects were assigned to either the cerebellar tRNS group or the Sham group. The subjects performed visuomotor tracking task with ten trials each in the early and late learning stages while receiving the stimulus intervention. CBI and motor evoked potentials were measured before the learning task, after the early learning stage, and after the late learning stage, and pupil diameter was measured during the task. There was no change in CBI in both groups. No group differences in motor learning rates were observed at any learning stages. Pupil diameter was smaller in the late learning stage than in the early learning stage in both groups. The cerebellar tRNS was suggested not to induce changes in CBI and improvement in motor learning, and it did not affect pupil diameter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内侧前额叶皮质(mPFC)在调节工作记忆中起着举足轻重的作用,执行功能,和自我调节行为。mPFC电路的功能障碍是包括精神分裂症在内的几种神经精神疾病的特征。抑郁症,和创伤后应激障碍。慢性应激(CS)被广泛认为是这些疾病发作的主要触发因素。尽管有证据表明CS暴露后mPFC电路的突触功能障碍,目前尚不清楚下边缘区(IL)和前边缘区(PL)皮质中不同的神经元群体在突触抑制-兴奋平衡(I/E比)方面是如何受到影响的.这里,使用神经蛋白质组学分析和全细胞膜片钳记录在锥体神经元和小白蛋白中间神经元(PV)内的PL和IL皮层,我们检查了慢性不可预测的应激21天后的突触变化,在雄性小鼠中。我们的结果揭示了CS对PL-和IL-锥体神经元的不同影响,导致两个子区域的I/E比增加,但通过不同的机制:CS增加PL中的抑制性突触驱动,同时减少IL中的兴奋性突触驱动。值得注意的是,CS暴露后,PV中间神经元的I/E比以及兴奋性和抑制性突触驱动在PL和IL回路中均不受影响。这些发现为CS对前额叶皮层电路的影响提供了新的机制见解,并支持了应激引起的mPFC功能减退的假设。在揭示慢性应激对内侧前额叶皮层的下边缘和前边缘亚区域内的突触I/E比的不同影响时,这项研究不仅加深了我们对压力的复杂神经生物学反应的理解,而且强调了神经精神疾病病理生理学中的一个重要因素。锥体神经元I/E比的差异调制,再加上小白蛋白中间神经元对这些亚区域内慢性应激的复原力,强调了前额叶电路的细微差别。这些发现为压力相关的神经精神疾病提供了重要的机械见解。此外,我们正在向研究界发布一个全面的蛋白质组学数据集,为未来的研究提供了宝贵的资源,旨在探索压力的分子基础及其对神经回路的影响。
    The medial prefrontal cortex (mPFC) plays a pivotal role in regulating working memory, executive function, and self-regulatory behaviors. Dysfunction in the mPFC circuits is a characteristic feature of several neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Chronic stress (CS) is widely recognized as a major triggering factor for the onset of these disorders. Although evidence suggests synaptic dysfunction in mPFC circuits following CS exposure, it remains unclear how different neuronal populations in the infralimbic (IL) and prelimbic (PL) cortices are affected in terms of synaptic inhibition/excitation balance (I/E ratio). Here, using neuroproteomic analysis and whole-cell patch-clamp recordings in pyramidal neurons (PNs) and parvalbumin (PV) interneurons within the PL and IL cortices, we examined the synaptic changes after 21 d of chronic unpredictable stress, in male mice. Our results reveal distinct impacts of CS on PL and IL PNs, resulting in an increased I/E ratio in both subregions but through different mechanisms: CS increases inhibitory synaptic drive in the PL while decreasing excitatory synaptic drive in the IL. Notably, the I/E ratio and excitatory and inhibitory synaptic drive of PV interneurons remained unaffected in both PL and IL circuits following CS exposure. These findings offer novel mechanistic insights into the influence of CS on mPFC circuits and support the hypothesis of stress-induced mPFC hypofunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从出生后P20-50天开始,青少年对丘脑皮质投射的抑制会导致成年小鼠前额叶皮质功能和认知功能的长期缺陷。虽然这表明丘脑活动在前额叶皮层成熟中的作用,目前尚不清楚这些投射的抑制如何影响青春期的前额叶电路。这里,我们使用化学遗传学工具从P20-35抑制雄性/雌性小鼠的丘脑-前额叶投射,并通过层(II/III或V/VI)和投射目标(MD,NAc或call骨mPFC)二十四小时后使用切片生理学。我们选择mPFC和MD投射细胞,因为它们在很大程度上由皮质层区分(II/III与V/VI,分别)和NAc投射细胞,因为它们跨越两个层,因此为其他两个群体提供了层内比较。我们发现,第II/III层伏隔核(NAc)和第V/VI层中体丘脑投射神经元中的兴奋性和抑制性电流的频率降低,而第V/VI-NAc层投射神经元显示兴奋性和抑制性电流的幅度增加。关于皮质投射,在对侧mPFC投射神经元中,抑制性电流而非兴奋性电流的频率增加。值得注意的是,尽管个体兴奋和抑制水平有这些复杂的变化,每个细胞的兴奋和抑制之间的总体平衡仅在对侧mPFC投影中改变。这一发现表明,体内平衡调节发生在皮层下而不是皮层内的call骨投射神经元内。因此,前额叶连接的抑制增加对于前额叶皮质回路成熟可能特别重要。最后,我们使用这种缩小的丘脑皮质抑制窗口(P20-P35)观察了成年小鼠的认知缺陷.两个大脑区域之间的连通性,丘脑和前额叶皮层,已发现精神分裂症患者减少。丘脑皮质投射中的神经元活动对于感觉皮质的正常发育很重要。丘脑-皮层活动如何调节前额叶皮层发育尚不清楚。这里,我们发现,青春期早期小鼠丘脑-前额叶投射活动的减少改变了突触与前额叶皮质内不同神经元投射的连接,这在青春期已经很明显.虽然这些变化中的一些可以通过减少丘脑-皮质投射来解释,其他适应是前额叶皮层固有的。这些发现暗示青春期是皮质发育的关键时期,并证明这一时期是治疗干预的潜在目标。
    Adolescent inhibition of thalamocortical projections from postnatal days P20 to 50 leads to long-lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuitry during adolescence. Here, we used chemogenetic tools to inhibit thalamoprefrontal projections in male/female mice from P20 to P35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target (mediodorsal thalamus (MD), nucleus accumbens (NAc), or callosal prefrontal projections) 24 h later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III NAc and layer V/VI MD-projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only altered in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosal-projecting neurons. Increased inhibition of intraprefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发育细胞死亡在脑回路形成中的作用尚不清楚。Cajal-Retzius细胞构成哺乳动物新皮质中的主要瞬时神经元群,在出生后体感成熟时大部分消失。在这项研究中,我们用老鼠遗传学,解剖学,功能,和行为方法,探讨Cajal-Retzius细胞出生后早期死亡对皮质回路成熟的影响。我们发现在他们死之前,Cajal-Retzius细胞主要接收来自第1层神经元的输入,只有在Cajal-Retzius细胞消失后,它们才能在2/3层锥体细胞上发育成熟的连接。从1层GABA能细胞到2/3层锥体细胞的这种发育连接进展调节了内部的感觉驱动抑制,更重要的是,穿过皮质列。在这里,我们表明Cajal-Retzius细胞死亡预防导致2/3层过度兴奋性,在多晶须相关的纹理辨别任务中,学习延迟和性能降低。
    The role of developmental cell death in the formation of brain circuits is not well understood. Cajal-Retzius cells constitute a major transient neuronal population in the mammalian neocortex, which largely disappears at the time of postnatal somatosensory maturation. In this study, we used mouse genetics, anatomical, functional, and behavioral approaches to explore the impact of the early postnatal death of Cajal-Retzius cells in the maturation of the cortical circuit. We find that before their death, Cajal-Retzius cells mainly receive inputs from layer 1 neurons, which can only develop their mature connectivity onto layer 2/3 pyramidal cells after Cajal-Retzius cells disappear. This developmental connectivity progression from layer 1 GABAergic to layer 2/3 pyramidal cells regulates sensory-driven inhibition within, and more so, across cortical columns. Here we show that Cajal-Retzius cell death prevention leads to layer 2/3 hyper-excitability, delayed learning and reduced performance in a multi-whisker-dependent texture discrimination task.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    持续关注,作为一般认知能力的基础,自然在不同的时间尺度上有所不同,从几个小时开始,例如,从清醒到困倦状态,到秒,例如,任务会话中的逐条试验波动。在这种跨尺度变异性之下是否存在统一的机制尚不清楚。在这里,我们表明,皮质兴奋/抑制(E/I)的波动是人类跨时间尺度持续注意力的强大调节剂。首先,我们观察到不同大脑状态下的注意力能力不同(觉醒,餐后嗜睡,睡眠不足),以及在任何具有较大波动的单个状态中。第二,不管涉及的时间尺度,我们发现高度专注的状态总是与以脑电图(EEG)特征为特征的更平衡的皮质E/I有关,虽然偏离平衡状态会导致注意力暂时下降,提示皮质E/I的波动是跨尺度注意变异性下的常见机制。此外,我们发现持续注意力和皮质E/I指数的变化在时域中表现出分形结构,具有自相似性的特征。一起来看,这些结果表明,持续的注意力在不同的时间尺度上自然会以比以前理解的更复杂的方式变化,皮质E/I作为共享的神经生理调节剂。
    Sustained attention, as the basis of general cognitive ability, naturally varies across different time scales, spanning from hours, e.g. from wakefulness to drowsiness state, to seconds, e.g. trial-by-trail fluctuation in a task session. Whether there is a unified mechanism underneath such trans-scale variability remains unclear. Here we show that fluctuation of cortical excitation/inhibition (E/I) is a strong modulator to sustained attention in humans across time scales. First, we observed the ability to attend varied across different brain states (wakefulness, postprandial somnolence, sleep deprived), as well as within any single state with larger swings. Second, regardless of the time scale involved, we found highly attentive state was always linked to more balanced cortical E/I characterized by electroencephalography (EEG) features, while deviations from the balanced state led to temporal decline in attention, suggesting the fluctuation of cortical E/I as a common mechanism underneath trans-scale attentional variability. Furthermore, we found the variations of both sustained attention and cortical E/I indices exhibited fractal structure in the temporal domain, exhibiting features of self-similarity. Taken together, these results demonstrate that sustained attention naturally varies across different time scales in a more complex way than previously appreciated, with the cortical E/I as a shared neurophysiological modulator.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    镜像神经元在执行(AE)和观察动作(AO)期间均显示活动。镜像神经元系统(MNS)也可能参与运动成像(MI)。广泛的研究表明,小脑与MNS相互关联,并且可能严重参与其活动。我们收集了小脑在MNS功能中的作用的证据,理论上和实验上。证据表明,小脑在AO和MI中起主要作用,其病变损害MNS功能可能是因为,通过调节具有镜像特性的皮质抑制性中间神经元的活动,小脑可能有助于视觉运动匹配,这是塑造镜子属性的基础。的确,小脑可以增强感觉运动模式,最大限度地减少预测结果和实际结果之间的差异,在AE和AO期间。此外,通过它与海马体的联系,在MI期间,小脑可能参与运动程序的内部模拟。最后,因为小脑神经调节可能会改善其对MNS活动的影响,我们探讨了其潜在的神经生理学和神经康复意义。
    Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum\'s role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    同位运动皮质的半球间抑制被认为对于准确的单侧运动功能是有效的。然而,单侧运动行为时半球间抑制的细胞机制尚不清楚.此外,神经调质乙酰胆碱对半球间抑制的影响和相关的细胞机制尚不清楚。为了解决这个知识差距,我们在伸爪任务期间记录了小鼠双侧运动皮层的神经元活动。随后,我们分析了细胞对水平的半球间尖峰相关性,对推定的细胞类型进行分类,以探索半球间抑制的潜在细胞回路机制。当小鼠参与到达任务时,我们发现了半球间尖峰相关性的细胞类型对特异性增强。我们还发现,药物乙酰胆碱操纵可以调节半球间的尖峰相关性。局部场对对侧激励的反应沿皮质深度不同,毒蕈碱受体拮抗作用增强了深层场反应的抑制成分。毒蕈碱型M2受体主要表达于深部皮质神经元,包括GABA能中间神经元。这些结果表明,在深层表达毒蕈碱受体的GABA能中间神经元介导了同位运动皮层半球间抑制的神经调节。
    Interhemispheric inhibition of the homotopic motor cortex is believed to be effective for accurate unilateral motor function. However, the cellular mechanisms underlying interhemispheric inhibition during unilateral motor behavior remain unclear. Furthermore, the impact of the neuromodulator acetylcholine on interhemispheric inhibition and the associated cellular mechanisms are not well understood. To address this knowledge gap, we conducted recordings of neuronal activity from the bilateral motor cortex of mice during the paw-reaching task. Subsequently, we analyzed interhemispheric spike correlation at the cell-pair level, classifying putative cell types to explore the underlying cellular circuitry mechanisms of interhemispheric inhibition. We found a cell-type pair-specific enhancement of the interhemispheric spike correlation when the mice were engaged in the reaching task. We also found that the interhemispheric spike correlation was modulated by pharmacological acetylcholine manipulation. The local field responses to contralateral excitation differed along the cortical depths, and muscarinic receptor antagonism enhanced the inhibitory component of the field response in deep layers. The muscarinic subtype M2 receptor is predominantly expressed in deep cortical neurons, including GABAergic interneurons. These results suggest that GABAergic interneurons expressing muscarinic receptors in deep layers mediate the neuromodulation of interhemispheric inhibition in the homotopic motor cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号