Na(3)V(2)(PO(4))(3)

Na (3) V (2) (PO (4)) (3)
  • 文章类型: Journal Article
    Na3V2(PO4)3由于其快速的Na+扩散而被认为是最有前途的钠离子电池阴极之一,良好的结构稳定性和高的工作潜力。然而,它的实际应用受到其低的固有电子电导率的限制。在这里,制备了碳涂覆的Cu2+掺杂的Na3V2(PO4)3阴极。碳涂层不仅提高了其表观导电性,但也抑制晶体生长和防止团聚的颗粒。此外,Cu2+掺杂有助于增强本征电导率和降低Na+扩散能垒,显着提高其电荷转移动力学。根据结构特征,电化学性能测试,电荷转移动力学分析和理论计算,事实证明,这种精心设计可确保出色的倍率性能(0.1C时116.9mAhg-1;10C时92.6mAhg-1)和出色的循环寿命(1C时300次循环后95.8%保留;10C时3300次循环后84.8%保留)。此外,通过原位XRD也证实了两相反应机理。该研究有望促进具有高能量/功率密度和出色循环寿命的基于Na3V2(PO4)3的钠离子电池的开发。
    Na3V2(PO4)3 is considered as one of the most promising cathodes for sodium ion batteries owing to its fast Na+ diffusion, good structural stability and high working potential. However, its practical application is limited by its low intrinsic electronic conductivity. Herein, a carbon coated Cu2+-doped Na3V2(PO4)3 cathode was prepared. The carbon coating not only improve its apparent conductivity, but also inhibit crystal growth and prevent agglomeration of particles. Moreover, Cu2+ doping contributes to an enhanced intrinsic conductivity and decreased Na+ diffusion energy barrier, remarkably boosting its charge transfer kinetics. Based on the structure characterizations, electrochemical performances tests, charge transfer kinetics analyses and theoretical calculations, it\'s proved that such an elaborate design ensures the excellent rate performances (116.9 mA h g-1 at 0.1C; 92.6 mA h g-1 at 10C) and distinguished cycling lifespan (95.8 % retention after 300 cycles at 1C; 84.8 % retention after 3300 cycles at 10C). Besides, a two-phase reaction mechanism is also confirmed via in-situ XRD. This research is expected to promote the development of Na3V2(PO4)3-based sodium ion batteries with high energy/power density and excellent cycling lifespan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Na3V2(PO4)3(NVP)遇到重大障碍,包括有限的固有电子和离子电导率,这阻碍了其商业可行性的潜力。目前,提出用Mn2+取代V3+以引入有利的载体,增强NVP系统的电子电导率,同时提供结构支持并稳定NASICON框架。这种取代也拓宽了Na+的迁移途径,加速离子传输。此外,为了增强稳定性,施加Al2O3涂层以抑制过渡金属Mn在电解质中的溶解。值得注意的是,Al2O3涂层在降低电解质中的HClO4浓度中起着三重作用,抑制Mn溶解,起离子传导相的作用。同样,碳纳米管(CNTs)在高温烧结过程中有效地阻止活性颗粒的团聚,从而优化NVP体系的电导率。此外,通过原位XRD测量研究了优异的结构稳定性,有效改善Na+去嵌入过程中的体积塌陷。此外,Na3V5.92/3Mn0.04(PO4)3/C@CNTs@1wt。%Al2O3(NVMP@CNTs@1wt。%Al2O3)具有独特的多孔结构,促进Na+的快速传输和增加电解质和阴极材料之间的界面面积。全面来说,NVMP@CNT@1wt。%Al2O3样品在0.1C时表现出显著的可逆比容量为122.6mAh/g。其在1C下保持115.9mAh/g的容量,在1000次循环后保持90.2mAh/g的容量。即使在30摄氏度,它实现了87.9mAh/g的容量,6000次循环后的容量保持率为84.87%。此外,NVMP@CNT@1wt。%Al2O3//CHC全电池在0.1C时可提供205.5mAh/g的高可逆容量,进一步表明在商业利用方面具有优越的应用潜力。
    Na3V2(PO4)3 (NVP) encounters significant obstacles, including limited intrinsic electronic and ionic conductivities, which hinder its potential for commercial feasibility. Currently, the substitution of V3+ with Mn2+ is proposed to introduce favorable carriers, enhancing the electronic conductivity of the NVP system while providing structural support and stabilizing the NASICON framework. This substitution also widens the Na+ migration pathways, accelerating ion transport. Furthermore, to bolster stability, Al2O3 coating is applied to suppress the dissolution of transition metal Mn in the electrolyte. Notably, the Al2O3 coating serves a triple role in reducing HClO4 concentration in the electrolyte, inhibiting Mn dissolution, and functioning as the ion-conducting phase. Likewise, carbon nanotubes (CNTs) effectively hinder the agglomeration of active particles during high-temperature sintering, thereby optimizing the conductivity of NVP system. In addition, the excellent structural stability is investigated by in situ XRD measurement, effectively improving the volume collapse during Na+ de-embedding. Moreover, the Na3V5.92/3Mn0.04(PO4)3/C@CNTs@1wt.%Al2O3 (NVMP@CNTs@1wt.%Al2O3) possesses unique porous structure, promoting rapid Na+ transport and increasing the interface area between the electrolyte and the cathode material. Comprehensively, the NVMP@CNTs@1wt.%Al2O3 sample demonstrates a remarkable reversible specific capacity of 122.6 mAh/g at 0.1 C. Moreover, it maintains a capacity of 115.9 mAh/g at 1 C with a capacity retention of 90.2 mAh/g after 1000 cycles. Even at 30 C, it achieves a capacity of 87.9 mAh/g, with a capacity retention rate of 84.87 % after 6000 cycles. Moreover, the NVMP@CNTs@1wt.%Al2O3//CHC full cell can deliver a high reversible capacity of 205.5 mAh/g at 0.1 C, further indicating the superior application potential in commercial utilization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Na3V2(PO4)3(NVP)具有稳定的三维框架结构和较高的工作电压,是钠离子电池理想的正极材料。然而,低的本征电导率和严重的结构倒塌限制了其进一步的应用。在这项工作中,通过简单的溶胶-凝胶法合成了同时优化的Na3V1.96Ru0.04(PO4)3/C@CNTs正极材料。具体来说,Ru3+的离子半径略大于V3+的离子半径(0.68µvs0.64µ),这不仅确保了Ru3+取代V3+站点的可行性,同时适当扩大钠离子在NVP中的迁移通道,稳定结构,有效地提高了钠离子的扩散效率。此外,CNT在晶粒之间构建三维导电网络,降低界面处的阻抗,有效提高电子电导率。进行了不同SOC下的非原位XRD分析,以确定Ru3掺杂的Na3V2(PO4)3的晶体结构的变化,并且细化结果同时表明在脱嵌过程中体积收缩值相对较低,小于3%,进一步验证Ru3+取代后的稳定晶体构造。此外,循环后的非原位XRD/SEM/CV/EIS表明显著改善的动力学特性和增强的结构稳定性。值得注意的是,改性的Na3V1.96.04(PO4)3/C@CNTs具有优异的倍率性能和超长循环性能。它在80/120C时提供82.3/80.9mAhg-1的高容量,并在14800/6250次循环后保持71.3/59.6mAhg-1,表明优异的保留率86.6%和73.6%,分别。这项工作为实现高性能正极材料提供了一种多改性策略,可广泛应用于各种材料的优化。
    Na3V2(PO4)3(NVP) is an ideal cathode material for sodium ion battery due to its stable three-dimensional frame structure and high operating voltage. However, the low intrinsic conductivity and serious structural collapse limit its further application. In this work, a simultaneous optimized Na3V1.96Ru0.04(PO4)3/C@CNTs cathode material is synthesized by a simple sol-gel method. Specifically, the ionic radius of Ru3+ is slightly larger than that of V3+ (0.68 Å vs 0.64 Å), which not only ensures the feasibility of Ru3+ replacing V3+ site, but also appropriately expands the migration channel of sodium ions in NVP and stabilizes the structure, effectively improving the diffusion efficiency of sodium ions. Moreover, CNTs construct a three-dimensional conductive network between the grains, reducing the impedance at the interface and effectively improving the electronic conductivity. Ex-situ XRD analysis at different SOC were performed to determine the change in the crystal structure of Ru3+doped Na3V2(PO4)3, and the refinement results simultaneously demonstrate the relatively low volume shrinkage value of less than 3 % during the de-intercalation process, further verifying the stabilized crystal construction after Ru3+ substitution. Furthermore, the ex-situ XRD/SEM/CV/EIS after cycling indicate the significantly improved kinetic characteristics and enhanced structural stability. Notably, the modified Na3V1.96Ru0.04(PO4)3/C@CNTs reveals superior rate capability and ultralong cyclic performance. It submits high capacities of 82.3/80.9 mAh g-1 at 80/120C and maintains 71.3/59.6 mAh g-1 after 14800/6250 cycles, indicating excellent retention ratios of 86.6 % and 73.6 %, respectively. This work provides a multi-modification strategy for the realization of high-performance cathode materials, which can be widely applied in the optimization of various materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Na3V2(PO4)3(NVP)的发展受到低电导率和不稳定晶体结构的严重阻碍。首次提出了富Na和Sn替代的同时优化策略。通过简单的溶胶-凝胶法成功制备了具有不同掺杂梯度的SnX-NVP@CNTs。值得注意的是,引入Sn2+可以产生更多的空穴载流子,从而提高其电子传输效率。此外,由于Sn2+离子具有较大的离子半径;当替换柱状位置的V3+离子时,可以扩大晶格间距以提高电极材料的结构稳定性。同时,有利于深层Na+离子的运动,提高电极材料的利用率。此外,为了实现收费补偿,有必要将过量的Na+引入到Sn掺杂的NVP体系中,这将增加脱层过程中涉及的Na的数量并提高其可逆能力。此外,碳纳米管的致密涂层可以形成有效的导电网络结构,提高了电子传递速率,抑制了活性晶粒的积累,加速了Na+的扩散。在Sn2+掺杂和碳纳米管包裹的协同调节下,制备的Sn0.07-NVP@CNTs在0.1C时表现出115.1mAh/g的高可逆容量,在10C下2000次循环后,容量保持率达到89.35%。即使在60℃下循环10,000次,其可逆容量从最初的75.9下降到51.3mAh/g,每个周期的容量损失仅为0.003%。此外,Sn0.07-NVP@CNT//CHC全电池释放容量139.9mAh/g,突出了其实际应用的巨大潜力。
    The development of Na3V2(PO4)3 (NVP) has been severely hindered by low conductivity and unstable crystal structure. A simultaneously optimized strategy of Na-rich and Sn substitution is proposed for the first time. SnX-NVP@CNTs with different doping gradients are successfully prepared by the facile sol-gel method. Notably, more hole carriers can be generated by introducing Sn2+, thus improving its electron transport efficiency. In addition, since Sn2+ ions have a larger ion radius; when replacing V3+ ions at pillar positions, the lattice spacing can be enlarged to improve the structural stability of electrode materials. Meanwhile, it is beneficial to the movement of deep-level Na+ ions and improves the utilization rate of electrode materials. Moreover, to achieve charge compensation, it is necessary to introduce excess Na+ to the Sn-doped NVP system, which will increase the number of Na+ involved in the deintercalation process and improve its reversible capacity. Furthermore, the dense coating of CNTs can form an efficient conductive network structure, which improves the electron transport rate and inhibits the accumulation of active grains to accelerate Na+ diffusion. Under the synergistic adjustment of Sn2+ doping and CNTs enwrapping, the prepared Sn0.07-NVP@CNTs exhibit a high reversible capacity of 115.1 mAh/g at 0.1C, and the capacity retention rate reaches 89.35 % after 2000 cycles at 10C. Even after 10,000 cycles at 60C, its reversible capacity dropped from the initial 75.9 to 51.3 mAh/g, with a capacity loss of only 0.003 % per cycle. Besides, the Sn0.07-NVP@CNTs//CHC full battery releases a capacity of 139.9 mAh/g, highlighting its great potential for actual applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Na3V2(PO4)3(NVP),具有独特的Na超离子电导率(NASICON)框架,已成为一种有前景的阴极材料。然而,低的电子电导率和差的结构稳定性限制了其进一步发展。目前,通过硒掺杂优化的碳纳米管(CNTs)首次用于NVP体系的改性。值得注意的是,在碳纳米管中引入硒会促进产生更多的缺陷,导致丰富的活性位点用于Na的脱嵌以实现更多的假电容。此外,新形成的C-Se键具有比原始CC(586.6KJmol-1对377.4KJmol-1)更强的键能。掺杂硒元素显著改善了原始CNTs的结构排列,表明可以获得增强的碳骨架以维持NVP系统的结构稳定性。此外,过量的硒可以掺杂到NVP晶体的主体中以代替部分氧。由于Se2-的离子较大(1.98µvsO2-的1.4µ),VSe6组具有更大的框架,这为Na+迁移提供了拓宽的途径,以改善动力学特性。因此,改性的NVP@CNTs:Se=1:1样品具有优异的倍率性能和循环性能。它显示了在20和60C时78.6和76.5mAh/g的高容量,在5000和7000次循环后保持65.4和53.8mAh/g,高容量保持率为84.49%和70.32%,分别。组装的NVP@CNT:Se=1:1//CHC全电池可提供153.6mAh/g的高值,表明优化的样品也表现出优异的应用潜力。
    Na3V2(PO4)3 (NVP), with unique Na super ionic conductivity (NASICON) framework, has become an prospective cathode material. However, the low electronic conductivity and poor structural stability limit its further development. Currently, the optimized carbon nanotubes (CNTs) by selenium doping are utilized to modify NVP system for the first time. Notably, the introduction of selenium in CNTs promotes to generate more defects, resulting in abundant active sites for the de-intercalation of Na+ to achieve more pseudocapacitance. Moreover, the newly formative C-Se bonds possess much stronger bond energy than the original CC (586.6 KJ mol-1 vs 377.4 KJ mol-1) bonds. The structure arrangement of the original CNTs is significantly improved by the doped selenium element, indicating that an enhanced carbon skeleton could be obtained to sustain the structural stability of NVP system. Furthermore, the excess selenium can be doped into the bulk of NVP crystal to replace of partial oxygen. Due to the larger ionic of Se2- (1.98 Å vs 1.4 Å of O2-), the VSe6 group has larger framework, which provides a broadened pathway for Na+ migration to improve the kinetic characteristics. Accordingly, the modified NVP@CNTs:Se = 1:1 sample exhibits superior rate capability and cyclic performance. It reveals high capacities of 78.6 and 76.5 mAh/g at 20 and 60C, maintaining 65.4 and 53.8 mAh/g after 5000 and 7000 cycles with high capacity retention of 84.49 % and 70.32 %, respectively. The assembled NVP@CNTs:Se = 1:1//CHC full cell delivers a high value of 153.6 mAh/g, suggesting the optimized sample also behaves excellent application potentials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一般来说,由于V-O和PO键的强烈相互作用,电子和Na的传输在Na3V2(PO4)3(NVP)中受到严重限制。此外,聚酰胺酸(PAA)由于不溶性而几乎不用于溶胶-凝胶路线。这项工作开发了一种基于改性PAA的简单液体合成策略,实现了具有丰富缺陷的多孔N掺杂碳框架的原位构建,以改善NVP的动力学。加入三乙胺(TEA)与PAA中的羧基反应以实现酸碱中和,将PAA转化为具有良好溶解性的聚酰胺盐。通过非原位扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了该独特系统的特殊形态构建机理。具体来说,PAA在预烧结过程中通过热聚合机理原位转化为链状聚酰亚胺(PI)。同时,NVP前体均匀分散在PI纤维中,有效地减少颗粒大小。在最后的治疗之后,有利的多孔碳骨架可以由PI的部分分解产生,在其上原位生长小的活性晶粒。所得的N掺杂碳衬底含有丰富的缺陷,受益于Na+的迁移。此外,多孔结构有利于缓解大电流冲击产生的应力和应变,增加电极/电解质之间的接触面积以提高活性物质的利用效率。全面来说,优化样品在15C下的容量为82.1mAhg-1,350次循环后的保留率为95.45%。它在90C下呈现67.6mAhg-1的容量,并且在1500次循环后保持52.2mAhg-1。即使在完整的细胞中,它显示的值为110.6mAhg-1。这项工作指导了聚合物在电极材料中原位多次改性的应用。
    Generally, the transport of electrons and Na+ is seriously constrained in Na3V2(PO4)3 (NVP) due to intense interactions of V-O and PO bonds. Besides, polyamide acid (PAA) is hardly used in the sol-gel route due to insolubility. This work develops a facile liquid synthesis strategy based on modified PAA, achieving in-situ construction of a porous N-doped carbon framework with rich defects to improve the kinetics of NVP. The addition of triethylamine (TEA) reacts with carboxyls in PAA to achieve acid-base neutralization, turning PAA into polyamide salts with good solubility. The special morphology construction mechanism of this unique system was observed by ex-situ scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Specifically, PAA undergoes in-situ conversion into chain-like polyimide (PI) through a thermal polymerization mechanism during the pre-sintering process. Meanwhile, NVP precursors are evenly dispersed in the PI fibers, efficiently reducing the particle size. After the final treatment, the favorable porous carbon skeleton could be generated derived from the partial decomposition of PI, on which small active grains are in situ grown. The resulting N-doped carbon substrate contains rich defects, benefiting from the migration of Na+. Furthermore, the porous construction is conducive to alleviating the stress and strain generated by the high current impact, increasing the contact area between electrodes/electrolytes to improve the utilization efficiency of active substances. Comprehensively, the optimized samples exhibit a capacity of 82.1 mAh g-1 at 15C with a retention rate of 95.45 % after 350 cycles. It submits a capacity of 67.6 mAh g-1 at 90C and remains 52.2 mAh g-1 after 1500 cycles. Even in full cells, it reveals a value of 110.6 mAh g-1. This work guides the application of in-situ multiple modifications of polymers in electrode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于聚阴离子化合物间的稳固构造,Na3V2(PO4)3(NVP)遭到高度看重。然而,低的固有电导率的缺点已经阻碍了其进一步的应用。在本文中,晶体结构的内部通道通过引入较大半径Ce3+来扩展,这增加了Na+的运输速率。Mo6+取代V位点的引入导致有益的n型掺杂效应并促进电子的传输。此外,引入CeO2包覆以进一步加强NVP体系的电子电导率。最初,CeO2用作n型半导体,并用作导电添加剂,以显着增强电极的电子电导率,从而改善电化学特性。此外,CeO2起氧气缓冲的作用,有助于在操作过程中保持活性金属分散,并实现NVP中CeO2和[VO6]八面体之间的有效电子转移,从而促进了氧化物之间出色的电连接。CeO2包层可以有效地与碳层集成以稳定NVP系统。全面来说,改性Na3V1.79Ce0.07Mo0.07(PO4)3/C@8wt。%CeO2(CeMo0.07@8wt。%CeO2)复合材料表现出优异的倍率和循环性能。其在1C时提供113.4mAh/g的容量,150次循环后的容量保持率为80.3%。即使在10C和40C,它还提供84.7mAh/g和76mAh/g的高容量,分别。此外,CHC//CeMo0.07@8wt。%CeO2不对称全电池具有优异的钠储存性能,表明了其未来的应用潜力。
    Na3V2(PO4)3 (NVP) is highly valued based on the stable construction among the polyanionic compounds. Nevertheless, the drawback of low intrinsic conductivity has been impeded its further application. In this paper, the internal channels of the crystal structure are extended by the introduction of larger radius Ce3+, which increases the transport rate of Na+. The introduction of Mo6+ replacing the V site leads to a beneficial n-type doping effect and facilitates the transportation of electrons. Besides, CeO2 cladding is introduced to further enhance the electronic conductivity of NVP system. Initially, CeO2 serves as an n-type semiconductor and functions as a conductive additive to significantly enhance the electronic conductivity of the electrode, thereby improving the electrochemical characteristics. Moreover, CeO2 functions as an oxygen buffer, aiding in the maintenance of active metal dispersion during operation and enabling efficient electron transfer between CeO2 and [VO6] octahedra in NVP, thus fostering outstanding electrical connectivity between the oxides. CeO2 cladding can be effectively integrated with the carbon layer to stabilize the NVP system. Comprehensively, the modified Na3V1.79Ce0.07Mo0.07(PO4)3/C@8wt.%CeO2 (CeMo0.07@8wt.%CeO2) composite exhibits excellent rate and cycling properties. It delivers a capacity of 113.4 mAh/g at 1C with a capacity retention rate of 80.3 % after 150 cycles. Even at 10C and 40C, it also submits high capacities of 84.7 mAh/g and 76 mAh/g, respectively. Furthermore, the CHC//CeMo0.07@8wt.%CeO2 asymmetric full cell possesses excellent sodium storage property, indicating its prospective application potentials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠超离子导体(NASICON)型Na3V2(PO4)3的稳定三维框架和高工作电压具有长循环寿命和高倍率性能的潜力;但是,它具有较差的固有电子导电性和较低的能量密度。在这里,将Ga3引入Na3V2(PO4)3中以在4.0V的高电位下激活V4/V5氧化还原对,以提高材料(Na3V2-xGax(PO4)3)的能量密度。用Ga3+部分取代V3+后,三个氧化还原对(V2+/V3+,V的V3/V4和V4/V5)在1.4-4.2V的电压范围内可逆转换,表明多电子(>2e-)参与可逆反应,同时有效提高了材料的电子导电性。因此,x=0.75的阴极表现出优异的电化学性能:在2.2-4.2V的电压范围内,在1C时提供105mAh/g的初始容量,400次循环后的容量保持率为92.3%,并在40C时提供88.3mAh/g的稳定可逆容量;在1.4-4.2V的电压范围内,在1C时呈现可逆容量152.3mAh/g(497.6Whkg-1),并且在20C下稳定循环1000次循环,每个循环的容量衰减为0.02375%。发现Na3V2-xGax(PO4)3阴极具有单相和双相反应的钠储存机理。这项研究提出了一种有用的策略,可以通过激活高电位V4/V5氧化还原对来提高NASICON结构的聚阴离子磷酸盐的能量密度和循环寿命。
    The stable three-dimensional framework and high operating voltage of sodium superionic conductor (NASICON)-type Na3V2(PO4)3 has the potential to work with long cycle life and high-rate performance; however, it suffers from the poor intrinsic electronic conductivity and low energy density. Herein, Ga3+ is introduced into Na3V2(PO4)3 to activate the V4+/V5+ redox couple at a high potential of 4.0 V for enhancing energy density of the materials (Na3V2-xGax(PO4)3). After the partial substitution of Ga3+ for V3+, three redox couples (V2+/V3+, V3+/V4+ and V4+/V5+) of V are reversibly converted in the voltage range of 1.4-4.2 V, suggesting multi-electrons (>2e-) involved in the reversible reaction, and simultaneously the electronic conductivity of the materials is effectively enhanced. As a result, the cathode with x = 0.75 exhibits excellent electrochemical properties: in the voltage range of 2.2-4.2 V, delivering an initial capacity of 105 mAh/g at 1C with a capacity retention rate of 92.3% after 400 cycles, and providing a stable reversible capacity of 88.3 mAh/g at 40C; and in the voltage range of 1.4-4.2 V, presenting the reversible capacity 152.3 mAh/g at 1C (497.6 Wh kg-1), and cycling stably for 1000 cycles at 20C with a capacity decay of 0.02375% per cycle. It is found that the Na3V2-xGax(PO4)3 cathodes possess the sodium storage mechanism of single-phase and bi-phase reactions. This investigation presents a useful strategy to enhance the energy density and cycling life of NASICON-structured polyanionic phosphates by activating high-potential V4+/V5+ redox couple.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Na3V2(PO4)3(NVP),具有良好的离子导电性能和高电压平台,被认为是最有前景的钠离子电池材料。然而,弱的固有电子导电性阻碍了其进一步商业化。在这里,提出了一种在NVP系统中V3位点进行Bi3+取代的巧妙策略。Bi3+的离子半径略大于V3+,可以进一步扩展NVP内部的晶体结构,从而加速Na+的迁移。同时,适量的碳涂层和碳纳米管(CNT)包裹构建有效的三维网络,这提供了电子转移的导电框架。此外,碳纳米管的引入也抑制了活性晶粒在烧结过程中的团聚,降低了Na+的粒径,缩短了Na+的扩散路径。全面来说,导电性,改性Na3V2-xBix(PO4)3/C@CNTs(0≤x≤0.05)样品的离子扩散能力和结构稳定性均有显著提高。Na3V1.97Bi0.03(PO4)3/C@CNT样品在12C下获得97.8mAhg-1的可逆容量,并在9000个超长循环后保持80.6mAhg-1的值。至于80C的超高速率,它表现出84.34mAhg-1的高容量,并在6000次循环后保持73.34mAhg-1的容量。优异的电化学性能源于通过Bi3+掺杂和由碳涂层和包裹的CNT组成的高导电网络的晶体结构的增强。
    Na3V2(PO4)3 (NVP), possessing good ionic conduction properties and high voltage plateau, has been deemed as the most prospective material for sodium ion batteries. However, the weak intrinsic electronic conductivity has hindered its further commercialization. Herein, an ingenious strategy of Bi3+ substitution at V3+ site in NVP system is proposed. The ionic radius of Bi3+ is slightly larger than that of V3+, which can further expand the crystal structure inside the NVP, thus accelerating the migration of Na+. Meanwhile, the appropriate amount of carbon coating and carbon nanotubes (CNTs) enwrapping construct an effective three-dimensional network, which provides a conductive framework for electronic transfer. Furthermore, the introduction of CNTs also inhibit the agglomeration of active grains during the sintering process, reducing the particle size and shortening the diffusion path of Na+. Comprehensively, the conductivity, ionic diffusion ability and structural stability of the modified Na3V2-xBix(PO4)3/C@CNTs (0 ≤ x ≤ 0.05) sample are significantly improved. The Na3V1.97Bi0.03(PO4)3/C@CNTs sample obtains a reversible capacity of 97.8 mAh g-1 at 12C and maintains a value of 80.6 mAh g-1 after 9000 ultra-long cycles. As for the super high rate at 80C, it exhibits a high capacity of 84.34 mAh g-1 and retains a capacity of 73.34 mAh g-1 after 6000 cycles. The superior electrochemical performance is derived from the enhancement of the crystal structure by Bi3+ doping and the highly conductive network consisting of carbon coating layers and enwrapped CNTs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    低电子电导率和高倍率下较差的性能阻碍了Na3V2(PO4)3(NVP)的应用。在这里,提出了一种容易合成具有多孔碳骨架的NVP的方法。具体来说,Na2CO3和葡萄糖,充当硬模板,在初始烧制阶段后引入到前体中,和Na2CO3颗粒在最后加热后通过冲洗除去。由于Na2CO3的导热性,葡萄糖的二次添加可以产生独特的石墨化多孔碳骨架,其与无定形碳涂层良好结合以构建稳定且导电的网络。多孔结构可以通过变形来缓解由电流冲击引起的应力和应变。此外,非原位EIS揭示了高导电性碳骨架可以显着降低表面电阻,并导致有效电压的增加,以促进Na的脱嵌。此外,不同电位下的非原位X射线光电子能谱(XPS)证实了VOC键的稳定存在。受益于独特的碳骨架,PC-NVP在0.1C时释放116.9mAhg-1的容量。即使在120摄氏度,PC-NVP仍然表现出84.7mAhg-1的高容量,在16,000次循环后保持41.3mAhg-1的值,对应于每个周期0.0032%的低衰减率。
    Low electronic conductivity and poor properties at high rate have hindered the application of Na3V2(PO4)3 (NVP). Herein, a facile synthesis of NVP with porous carbon skeleton is proposed. Specifically, Na2CO3 and glucose, acting as hard templates, are introduced to the precursors after initial firing stage, and Na2CO3 particles are removed by flushing after the final heatment. Due to the thermal conductivity of Na2CO3, the secondary addition of glucose can generate distinctive graphitized porous carbon skeleton, which bonds well with the amorphous carbon coating to construct stable and conductive network. The porous construction can alleviate the stress and strain caused by the current impact through deformation. Furthermore, ex-situ EIS reveals the highly conductive carbon skeleton can significantly reduce the surface resistance and result in an increase of effective voltage to promote the de-intercalation of Na+. Moreover, the ex-situ X-ray photoelectron spectroscopy (XPS) at different potentials confirms the stabilized existence of VOC bonds. Benefiting from the unique carbon skeleton, the PC-NVP releases capacity of 116.9 mAh g-1 at 0.1C. Even at 120C, PC-NVP still exhibits a high capacity of 84.7 mAh g-1, retaining a value of 41.3 mAh g-1 after 16,000 cycles, corresponding to a low decay rate of 0.0032% per cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号