NHEJ

NHEJ
  • 文章类型: Journal Article
    Olaparib的大规模III期临床试验揭示了BRCA基因突变或同源重组缺陷(HRD)的卵巢癌患者的益处。然而,少于50%的卵巢癌患者同时存在BRCA突变和HRD.因此,提高奥拉帕尼在HR高患者中的疗效具有重要的临床价值。这里,由Olaparib和CDK12-IN-3组成的组合策略可有效抑制细胞系中HR高的卵巢癌的生长,患者来源的类器官(PDO),和小鼠异种移植模型。此外,组合策略诱导了严重的DNA双链断裂(DSB)形成,G2期NHEJ活性增加,并降低癌细胞的HR活性。机械上,联合治疗损害了Ku80聚(ADP-核糖基)(PARylation)和磷酸化,导致PARP1-Ku80复合物解离。解离后,DSB的Ku80入住率和由此产生的Ku80引发的NHEJ活性增加。由于Ku80介导的DNA末端保护,联合治疗后MRE11和Rad51病灶形成受到抑制,表明这种治疗抑制了HR活动。有趣的是,组合战略加快了CGAS核的重新本地化,进一步抑制HR,相反,增加基因组的不稳定性。此外,停药后对细胞存活的抑制作用持续存在.这些发现为CDK12-IN-3联合奥拉帕尼的临床应用提供了理论基础。
    Large-scale phase III clinical trials of Olaparib have revealed benefits for ovarian cancer patients with BRCA gene mutations or homologous recombination deficiency (HRD). However, fewer than 50% of ovarian cancer patients have both BRCA mutations and HRD. Therefore, improving the effect of Olaparib in HR-proficient patients is of great clinical value. Here, a combination strategy comprising Olaparib and CDK12-IN-3 effectively inhibited the growth of HR-proficient ovarian cancer in cell line, patient-derived organoid (PDO), and mouse xenograft models. Furthermore, the combination strategy induced severe DNA double-strand break (DSB) formation, increased NHEJ activity in the G2 phase, and reduced HR activity in cancer cells. Mechanistically, the combination treatment impaired Ku80 poly(ADP-ribosyl)ation (PARylation) and phosphorylation, resulting in PARP1-Ku80 complex dissociation. After dissociation, Ku80 occupancy at DSBs and the resulting Ku80-primed NHEJ activity were increased. Owing to Ku80-mediated DNA end protection, MRE11 and Rad51 foci formation was inhibited after the combination treatment, suggesting that this treatment suppressed HR activity. Intriguingly, the combination strategy expedited cGAS nuclear relocalization, further suppressing HR and, conversely, increasing genomic instability. Moreover, the inhibitory effect on cell survival persisted after drug withdrawal. These findings provide a rationale for the clinical application of CDK12-IN-3 in combination with Olaparib.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    DNA双链断裂(DSB)被认为是最有害的DNA损伤形式之一。这些DSB通过非同源末端连接(NHEJ)和同源重组(HR)途径修复,并且这些过程中的缺陷可导致基因组不稳定并促进肿瘤发生。磷酸酶和Tensin同源物(PTEN)在HR修复中至关重要。然而,它在NHEJ修复途径中的参与仍然难以捉摸。在这项研究中,我们研究了PTEN在NHEJ修复途径中的表观遗传调控功能。我们的发现表明,PTEN的磷酸化和磷酸酶活性都是有效的NHEJ介导的DSB修复所必需的。在DNA损伤反应中,我们观察到关键NHEJ蛋白的表达和染色质附着减少,包括Ku70/80,DNA-PKcs,XRCC4和XLF,在PTEN-null单元格中。这种减少归因于这些NHEJ蛋白的不稳定性,正如我们的蛋白质半衰期测定所证实的。我们已经证明了DNA-PKcs抑制剂,NU7026抑制DNA损伤诱导的PTENC末端磷酸化。因此,我们的研究表明PTEN可能是DNA-PKcs的靶标。蛋白质-蛋白质对接分析还显示PTEN与DNA-PKcs的C末端区域相互作用。PTEN无效细胞在DNA损伤后表现出受损的DNA-PKcs灶,因为它处于超磷酸化状态。磷酸化-PTEN通过维持其也取决于其磷酸酶活性的低磷酸化状态来帮助在DNA损伤位点上募集DNA-PKcs。因此,DNA损伤后,PTEN和DNA-PKcs之间的串扰调节NHEJ途径。因此,在DNA损伤期间,PTEN被DNA-PKcs直接或间接磷酸化并附着在染色质上,导致DNA-PKcs去磷酸化,随后在染色质上募集其他NHEJ因子,以有效执行NHEJ途径。因此,我们的研究提供了对PTEN的表观遗传调控及其在控制NHEJ途径中的重要作用的分子理解.
    DNA double-strand breaks (DSBs) are considered one of the most harmful forms of DNA damage. These DSBs are repaired through non-homologous end joining (NHEJ) and homologous recombination (HR) pathways and defects in these processes can lead to genomic instability and promote tumorigenesis. Phosphatase and Tensin homolog (PTEN) are crucial in HR repair. However, its involvement in the NHEJ repair pathway has remained elusive. In this study, we investigate the function of epigenetic regulation of PTEN in the NHEJ repair pathway. Our findings indicate that both the phosphorylation and phosphatase activity of PTEN are required for efficient NHEJ-mediated DSB repair. During the DNA damage response, we observed a reduced expression and chromatin attachment of the key NHEJ proteins, including Ku70/80, DNA-PKcs, XRCC4, and XLF, in PTEN-null cells. This reduction was attributed to the instability of these NHEJ proteins, as confirmed by our protein half-life assay. We have demonstrated that the DNA-PKcs inhibitor, NU7026, suppresses the DNA damage-induced phosphorylation of the C-terminal of PTEN. Thus, our study indicates that PTEN could be a target of DNA-PKcs. Protein-protein docking analysis also shows that PTEN interacts with the C-terminal region of DNA-PKcs. PTEN null cells exhibit compromised DNA-PKcs foci after DNA damage as it is in a hyper-phosphorylated state. Phospho-PTEN assists in recruiting DNA-PKcs on the DNA damage site by maintaining its hypo-phosphorylated state which also depends on its phosphatase activity. Therefore, after DNA damage, crosstalk between PTEN and DNA-PKcs modulates the NHEJ pathway. Thus, during DNA damage, PTEN gets phosphorylated directly or indirectly by DNA-PKcs and attaches to chromatin, resulting in the dephosphorylation of DNA-PKcs and subsequently recruitment of other NHEJ factors on chromatin occurs for efficient execution of the NHEJ pathway. Thus, our research provides a molecular understanding of the epigenetic regulation of PTEN and its significant role in controlling the NHEJ pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全球甲状腺癌发病率逐年上升,主要是由于电离辐射(IR)等因素,碘摄入量,和遗传学。甲状腺乳头状癌(PTC)约占甲状腺癌病例的80%。RET/PTC1(转染过程中含有6[CCDC6]重排的卷曲螺旋结构域)重排是切尔诺贝利和广岛长崎原子弹爆炸中暴露于低剂量IR的超过70%的甲状腺癌的显着特征。本研究旨在阐明PTC中RET/PTC1重排与IR之间的机制。N-thy-ori-3-1细胞在不同天接受不同剂量的IR(2/1/0.5/0.2/0.1/0.05Gy),结果显示低剂量IR诱导的RET/PTC1重排呈剂量依赖性。已观察到RET/PTC1在体内和体外都促进PTC。为了描述不同DNA修复途径的作用,SCR7,RI-1和Olaparib用于抑制非同源末端连接(NHEJ),同源重组(HR),和微同源介导的末端连接(MMEJ),分别。值得注意的是,抑制NHEJ可增强HR修复效率并减少IR诱导的RET/PTC1重排。相反,抑制HR增加NHEJ修复效率和随后的RET/PTC1重排。MMEJ在这一进展中没有表现出明显的作用。此外,抑制DNA依赖性蛋白激酶催化亚基(DNA-PKcs)会降低NHEJ的效率,从而减少IR诱导的RET/PTC1重排。最后,数据表明NHEJ,而不是HR或MMEJ,是IR诱导的RET/PTC1重排的关键原因。靶向DNA-PKcs以抑制NHEJ已成为解决PTC中IR诱导的RET/PTC1重排的有希望的治疗策略。
    Thyroid cancer incidence increases worldwide annually, primarily due to factors such as ionizing radiation (IR), iodine intake, and genetics. Papillary carcinoma of the thyroid (PTC) accounts for about 80% of thyroid cancer cases. RET/PTC1 (coiled-coil domain containing 6 [CCDC6]-rearranged during transfection) rearrangement is a distinctive feature in over 70% of thyroid cancers who exposed to low doses of IR in Chernobyl and Hiroshima‒Nagasaki atomic bombings. This study aims to elucidate mechanism between RET/PTC1 rearrangement and IR in PTC. N-thy-ori-3-1 cells were subjected to varying doses of IR (2/1/0.5/0.2/0.1/0.05 Gy) of IR at different days, and result showed low-dose IR-induced RET/PTC1 rearrangement in a dose-dependent manner. RET/PTC1 has been observed to promote PTC both in vivo and in vitro. To delineate the role of different DNA repair pathways, SCR7, RI-1, and Olaparib were employed to inhibit non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ), respectively. Notably, inhibiting NHEJ enhanced HR repair efficiency and reduced IR-induced RET/PTC1 rearrangement. Conversely, inhibiting HR increased NHEJ repair efficiency and subsequent RET/PTC1 rearrangement. The MMEJ did not show a markable role in this progress. Additionally, inhibiting DNA-dependent protein kinase catalytic subunit (DNA-PKcs) decreased the efficiency of NHEJ and thus reduced IR-induced RET/PTC1 rearrangement. To conclude, the data suggest that NHEJ, rather than HR or MMEJ, is the critical cause of IR-induced RET/PTC1 rearrangement. Targeting DNA-PKcs to inhibit the NHEJ has emerged as a promising therapeutic strategy for addressing IR-induced RET/PTC1 rearrangement in PTC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非同源末端连接(NHEJ)是关键的DNA修复途径,对于结核分枝杆菌(Mtb)在休眠期间的存活和持久性至关重要。非复制阶段,其长期韧性的一个关键方面。分枝杆菌NHEJ是一种非常简单的双组分系统,包含限速DNA结合蛋白Ku(mKu)和连接酶D。为了阐明mKu在NHEJ中的作用,我们进行了一系列的计算机模拟和体外实验。分子动力学模拟和体外实验表明,mKu的DNA结合稳定了蛋白质和DNA,同时还保护DNA末端免受外切核酸酶降解。表面等离子体共振(SPR)和电泳迁移率变化分析(EMSA)证明了mKu对线性双链DNA(dsDNA)的强大亲和力,显示40个碱基对或更长的DNA底物的正协同性,以及它沿着DNA链滑动的能力。此外,分析超速离心,尺寸排阻色谱法,和负染色电子显微镜(EM)揭示了mKu的独特倾向,形成高阶寡聚体专门与DNA,提示在分枝杆菌NHEJ突触中的潜在作用。这一全面的表征为mKu在MtbNHEJ修复途径中的功能提供了新的思路。因此,靶向该途径可能会阻碍病原体在宿主体内长期维持其潜伏状态的能力。
    Non-homologous end-joining (NHEJ) stands as a pivotal DNA repair pathway crucial for the survival and persistence of Mycobacterium tuberculosis (Mtb) during its dormant, non-replicating phase, a key aspect of its long-term resilience. Mycobacterial NHEJ is a remarkably simple two-component system comprising the rate-limiting DNA binding protein Ku (mKu) and Ligase D. To elucidate mKu\'s role in NHEJ, we conducted a series of in silico and in vitro experiments. Molecular dynamics simulations and in vitro assays revealed that mKu\'s DNA binding stabilizes both the protein and DNA, while also shielding DNA ends from exonuclease degradation. Surface plasmon resonance (SPR) and electrophoretic mobility shift assays (EMSA) demonstrated mKu\'s robust affinity for linear double-stranded DNA (dsDNA), showing positive cooperativity for DNA substrates of 40 base pairs or longer, and its ability to slide along DNA strands. Moreover, analytical ultracentrifugation, size exclusion chromatography, and negative stain electron microscopy (EM) unveiled mKu\'s unique propensity to form higher-order oligomers exclusively with DNA, suggesting a potential role in mycobacterial NHEJ synapsis. This comprehensive characterization sheds new light on mKu\'s function within the Mtb NHEJ repair pathway. Targeting this pathway may thus impede the pathogen\'s ability to persist in its latent state within the host for prolonged periods.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非致病性分枝杆菌,包括新耳分枝杆菌,由于其天然的类固醇代谢途径,可以直接利用植物甾醇进行大规模工业化生产类固醇药物中间体。新牛分枝杆菌的靶向基因修饰有利于筛选高附加值产品的高产工程菌,如妊娠-20-羧酸(PDC),这是合成一些皮质类固醇的重要前体。基于异源II型CRISPR/sth1Cas9系统,开发了一种简单的策略来遗传工程师M.neoaurum基因组。这里,从pMV261构建了一个可定制的质粒工具pMSC9,整合了sth1Cas9蛋白和相应的sgRNA支架。随后,pMSC9插入了对应于不同靶基因的间隔序列,生成编辑质粒,然后变成M.neoaurum.因此,通过CRISPR/sth1Cas9系统将目标基因引入DNA双林断裂(DSB),然后通过先天性非同源末端连接(NHEJ)机制进行修复。最后,编辑质粒通过无抗性培养从正确编辑的M.neoaurum突变体中治愈,将得到的缺失一个靶基因的突变体作为通过相同的过程可以缺失另一个靶基因的宿主。这项研究表明,CRISPR/sth1Cas9工具允许对新牛分枝杆菌菌株进行快速编辑。CRISPR/sth1Cas9系统的编辑模式表明,该工具是新牛分枝杆菌基因编辑工具箱的重要补充。
    Non-pathogenic mycobacteria, including Mycolicibacterium neoaurum, can directly utilize phytosterols for large-scale industrial production of steroid medicine intermediates due to their natural steroid metabolism pathway. The targeted genetic modification of M. neoaurum is conducive to the selection of high-yield engineering bacteria with high-value-added product, such as Pregnadien-20-carboxylic acid (PDC), which is an important precursor for synthesizing some corticosteroids. Based on heterologous type II CRISPR/sth1Cas9 system, a simple strategy was developed to genetic engineer M. neoaurum genome. Here, a customizable plasmid tool pMSC9 was constructed from pMV261 with integration of sth1Cas9 protein and corresponding sgRNA scaffold. Subsequently, the pMSC9 was inserted with spacer sequences corresponding to different targeted genes, generating editing plasmids, and then transformed into M. neoaurum. As a result, the targeted genes were introduced with DNA double stand breaks (DSBs) by CRISPR/sth1Cas9 system and then repaired by innate non-homologous end-joining (NHEJ) mechanism. Finally, editing plasmids were cured from correctly edited M. neoaurum mutants by means of no resistance cultivation, and the resulting mutant deleting the one target gene was used as the host to which another target gene could be deleted via the same process. This study demonstrated that the CRISPR/sth1Cas9 tool allowed M. neoaurum strains to be rapidly edited. And the editing mode of CRISPR/sth1Cas9 system indicated that this tool was an important supplement to the gene editing toolbox of M. neoaurum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CRISPR-Cas9介导的基因编辑在基础和临床研究中具有广泛的应用,并且是几种疾病的有希望的工具。我们的实验室以前开发了一种非整合RNA病毒,麻疹病毒(MeV),通过用诱导多能干细胞生成的重编程因子替换病毒附着蛋白作为单周期重编程载体。受MeV重编程矢量效率的鼓舞,在这项研究中,我们开发了一种单周期MeV载体,将gRNA和Cas9核酸酶传递给人类细胞,以进行有效的基因编辑。我们证明MeV载体在人细胞中实现了报道基因(mCherry)和内源基因(HBB和FANCD1)的靶基因编辑。此外,MeV载体通过使用单链寡核苷酸供体的同源定向修复实现了精确的敲入。MeV载体是人类细胞中基因敲除和敲入修饰的新的灵活平台,能够在新技术发展的过程中融入它们。
    CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非同源末端连接途径对DNA双链断裂的修复是由Ku与DNA末端的结合引发的。多种Ku蛋白在体外加载到线性DNA上。然而,在细胞中,Ku负载限制在每个DNA末端1-2个分子。执行这一限制的机制目前尚不清楚。这里,我们表明,DNA依赖性蛋白激酶(DNA-PKcs)的催化亚基,但不是它的蛋白激酶活性,需要防止过度的Ku进入染色质。Ku的积累进一步受到两种机制的限制:neddylation/FBXL12依赖性过程在整个细胞周期中主动去除负载的Ku分子,以及在S期运行的CtIP/ATM依赖性机制。最后,我们证明了Ku负载的错误调节导致DNA末端附近的转录受损。一起,我们的数据揭示了防止Ku侵入染色质和干扰其他DNA交易的多种机制.
    Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这修正了文章DOI:10.3389/fimmu.2024.1405022。].
    [This corrects the article DOI: 10.3389/fimmu.2024.1405022.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    鉴于它在生活中的核心作用,DNA非常容易损坏。双链断裂(DSBs)是毒性最强的DNA损伤形式,和DSB对基因组完整性构成最大的危险。在高等脊椎动物中,非同源末端连接途径(NHEJ)是修复DSBs的主要途径。NHEJ有三个步骤:1)DNA依赖性蛋白激酶[DNA-PK]的DNA末端识别,2)由众多NHEJ辅助因子进行的DNA末端加工,和3)通过DNA连接酶IV复合物(LX4)的DNA末端连接。虽然这似乎是一个相对简单的机制,越来越明显的是,事实并非如此。最近,通过冷冻EM研究的增殖,关于非同源末端连接的机制已经获得了很多见解,由这些新的结构数据提供的结构-功能突变实验,和新颖的单分子成像方法。该领域的一个新兴共识是,NHEJ从DNA-PK的初始DSB末端识别发展到远程突触复合物中两个DNA末端的突触,其中末端相距太远(115µ)以进行连接,然后发展到一个短程突触复合体,其中末端的位置足够近,可以连接。从这些结构研究中令人惊讶的是观察到代表NHEJ长程复合物的两种不同类型的DNA-PK二聚体。在这次审查中,我们总结了有关不同NHEJ突触复合物功能的最新知识,并将这一新信息与新兴的细胞单分子显微镜研究以及先前关于DNA-PK修复功能的研究进行对照.
    Given its central role in life, DNA is remarkably easy to damage. Double strand breaks (DSBs) are the most toxic form of DNA damage, and DSBs pose the greatest danger to genomic integrity. In higher vertebrates, the non-homologous end joining pathway (NHEJ) is the predominate pathway that repairs DSBs. NHEJ has three steps: 1) DNA end recognition by the DNA dependent protein kinase [DNA-PK], 2) DNA end-processing by numerous NHEJ accessory factors, and 3) DNA end ligation by the DNA ligase IV complex (LX4). Although this would appear to be a relatively simple mechanism, it has become increasingly apparent that it is not. Recently, much insight has been derived regarding the mechanism of non-homologous end joining through a proliferation of cryo-EM studies, structure-function mutational experiments informed by these new structural data, and novel single-molecule imaging approaches. An emerging consensus in the field is that NHEJ progresses from initial DSB end recognition by DNA-PK to synapsis of the two DNA ends in a long-range synaptic complex where ends are held too far apart (115 Å) for ligation, and then progress to a short-range synaptic complex where ends are positioned close enough for ligation. What was surprising from these structural studies was the observation of two distinct types of DNA-PK dimers that represent NHEJ long-range complexes. In this review, we summarize current knowledge about the function of the distinct NHEJ synaptic complexes and align this new information with emerging cellular single-molecule microscopy studies as well as with previous studies of DNA-PK\'s function in repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    KU异二聚体(KU70/80)迅速募集至DNA双链断裂(DSB)以调节其加工和修复。先前的工作表明,KU80中的氨基末端vonWillebrand样(vWA样)结构域具有保守的疏水口袋,该口袋与称为Ku结合基序(KBM)的短肽基序相互作用。KBM存在于多种DNA修复蛋白中,如APLF、CYREN,和Werner蛋白(WRN)。这里,为了研究KBM介导的蛋白质-蛋白质相互作用对KU80功能的重要性,我们使用KU80缺陷的中国仓鼠卵巢(Xrs-6)细胞转染RFP标记的野生型人KU80或具有突变体vWA样结构域(KU80L68R)的KU80。令人惊讶的是,而突变型RFP-KU80L68R在KU80缺陷型Xrs-6细胞中大部分或完全恢复了NHEJ效率和抗辐射性,它未能恢复细胞对喜树碱(CPT)或羟基脲(HU)诱导的DNA复制应激的抗性。此外,表达RFP-KU80L68R的KU80缺陷型Xrs-6细胞在用CPT或HU处理后以S/G2期依赖性方式积累了泛核γH2AX,这表明KU80与一种或多种含KBM蛋白的结合对于DNA复制应激过程中出现的DNA末端的加工和/或修复是必需的。与这个想法一致,WRN解旋酶/外切核酸酶的消耗概括了CPT诱导的γH2AX表型,并在认识论上对KU80vWA样结构域进行了突变。这些数据确定了KU80结合KBM在CHO细胞对停滞和/或塌陷的DNA复制叉的反应和抗性中的作用。并暗示KU80与WRN的KBM介导的相互作用是该作用的关键效应物。
    The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80L68R). Surprisingly, while mutant RFP-KU80L68R largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient Xrs-6 cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80L68R accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号