Municipal wastewater (MWW)

  • 文章类型: Journal Article
    Wastewater-based epidemiology (WBE) provides a comprehensive real-time framework of population attitude and health status. This approach is attracting the interest of medical community and health authorities to monitor the prevalence of a virus (such as the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) among a community. Indeed, WBE is currently fine-tuning as environmental surveillance tool for coronavirus disease 2019 (COVID-19) pandemic. After a bibliometric analysis conducted to discover the research trends in WBE field, this work aimed to side-by-side compare the conventional method based on clinical testing with WBE approach. Furthermore, novel guidelines were developed to apply the WBE approach to a pandemic. The growing interest on WBE approach for COVID-19 pandemic is demonstrated by looking at the sharp increase in scientific papers published in the last years and at the ongoing studies on viral quantification methods and analytical procedures. The side-by-side comparison highlighted the ability of WBE to identify the hot-spot areas faster than the conventional approach, reducing the costs (e.g., rational use of available resources) and the gatherings at medical centers. Contrary to clinical testing, WBE has the surveillance capacity for preventing the virus resurgence, including asymptomatic contribution, and ensuring the preservation of medical staff health by avoiding the exposure to the virus infection during clinical testing. As extensively reported, the time in collecting epidemiological data is crucial for establishing the prevention and mitigation measures that are essential for curbing a pandemic. The developed guidelines can help to build a WBE system useful to control any future pandemic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半工业规模的AnMBR工厂运行了600天以上,以评估该技术在环境温度(范围为10至27°C)下的长期运行,可变水力停留时间(HRT)(25至41h)和进水负荷(大部分在15至45kgCOD·d-1之间)。从全面的污水处理厂的预处理中,向该工厂注入了富含硫酸盐的高负荷市政废水。结果表明,AnMBR作为废水处理的核心技术具有良好的性能,在长期运行中获得平均87.2±6.1%的COD去除率,40%的数据超过90%。考虑了五个时期来评估HRT的效果,进水特性,COD/SO42--S比值和温度对生物进程的影响。在选定的期间,甲烷产量从70.2±36.0到169.0±95.1STPLCH4·kg-1CODinf,根据进水硫酸盐浓度,与传统的活性污泥系统相比,浪费污泥的产量减少了8%至42%。流出物表现出显著的营养回收潜力。温度,HRT,SRT和进水COD/SO42--S比率被证实是最大化AnMBR性能时要考虑的关键参数。
    A semi-industrial scale AnMBR plant was operated for more than 600 days to evaluate the long-term operation of this technology at ambient temperature (ranging from 10 to 27 ○C), variable hydraulic retention times (HRT) (from 25 to 41 h) and influent loads (mostly between 15 and 45 kg COD·d-1). The plant was fed with sulfate-rich high-loaded municipal wastewater from the pre-treatment of a full-scale WWTP. The results showed promising AnMBR performance as the core technology for wastewater treatment, obtaining an average 87.2 ± 6.1 % COD removal during long-term operation, with 40 % of the data over 90%. Five periods were considered to evaluate the effect of HRT, influent characteristics, COD/SO42--S ratio and temperature on the biological process. In the selected periods, methane yields varied from 70.2±36.0 to 169.0±95.1 STP L CH4·kg-1 CODinf, depending on the influent sulfate concentration, and wasting sludge production was reduced by between 8 % and 42 % compared to conventional activated sludge systems. The effluent exhibited a significant nutrient recovery potential. Temperature, HRT, SRT and influent COD/SO42--S ratio were corroborated as crucial parameters to consider in maximizing AnMBR performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The kinetics and microbial ecology in sulfidogenic bioreactors used in a novel two-stage process for co-treatment of acid mine drainage (AMD) and municipal wastewater (MWW) were investigated. Michaelis-Menten modeling of COD oxidation by sulfate reducing bacteria (SRB) (Vmax=0.33mgL(-1)min(-1), Km=4.3mgL(-1)) suggested that the Vmax can be reasonably achieved given the typical COD values in MWW and anticipated mixing with AMD. Non-competitive inhibition modeling (Ki=6.55mgL(-1)) indicated that excessive iron level should be avoided to limit its effects on SRB. The COD oxidation rate was positively correlated to COD/sulfate ratio and SRB population, as evidenced by dsrA gene copies. Phylogenetic analysis revealed diverse microbial communities dominated by sulfate reducing delta-proteobacteria. Microbial community and relative quantities of SRB showed significant differences under different COD/sulfate ratios (0.2, 1 and 2), and the highest dsrA gene concentration and most complex microbial diversity were observed under COD/sulfate ratio 2. Major species were associated with Desulfovirga, Desulfobulbus, Desulfovibrio, and Syntrophus sp. The reported COD kinetics, SRB abundances and the phylogenetic profile provide insights into the co-treatment process and help identify the parameters of concerns for such technology development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号