Multicellularity

多细胞性
  • 文章类型: Journal Article
    单细胞生物向多细胞生物的进化必须解决单个细胞与群体之间生殖利益的冲突。社会变形虫盘根是一种具有兼性社会性的土壤生活真核生物。当细胞在营养物质的存在下生长时,细胞在饥饿下聚集形成含有孢子和利他茎细胞的子实体。一旦细胞社交化,它们完成子实体的形成,即使有新的营养来源。这种社会承诺的持续存在提出了一些问题,因为它抑制了单个细胞迅速恢复到孤立的生长。我假设阻止过早放弃承诺的特征被选择。最近的工作揭示了通过强制重新喂养过早拒绝承诺的结果;去定向细胞由于与社会承诺细胞的相互作用而降低了凝聚力,因此采取了利他主义的前茎样位置。我构建了一个假设他们分工的进化模型。结果显示,健身景观中有一个山谷,可以防止去犯罪突变体的入侵,表明社会承诺的进化稳定性。这些发现提供了一个通用方案,通过发展特定的分工来维持多细胞性,在这种情况下,凝聚力较低的人成为利他主义者。
    Evolution of unicellular to multicellular organisms must resolve conflicts in reproductive interests between individual cells and the group. The social amoeba Dictyostelium discoideum is a soil-living eukaryote with facultative sociality. While cells grow in the presence of nutrients, cells aggregate under starvation to form fruiting bodies containing spores and altruistic stalk cells. Once cells socially committed, they complete formation of fruiting bodies, even if a new source of nutrients becomes available. The persistence of this social commitment raises questions as it inhibits individual cells from swiftly returning to solitary growth. I hypothesize that traits enabling premature de-commitment are hindered from being selected. Recent work has revealed outcomes of the premature de-commitment through forced refeeding; The de-committed cells take an altruistic prestalk-like position due to their reduced cohesiveness through interactions with socially committed cells. I constructed an evolutionary model assuming their division of labor. The results revealed a valley in the fitness landscape that prevented invasion of de-committing mutants, indicating evolutionary stability of the social commitment. The findings provide a general scheme that maintains multicellularity by evolving a specific division of labor, in which less cohesive individuals become altruists.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为动物的近亲,鞭毛虫提供了对动物细胞生理学起源的见解。这里,我们报告了来自MonoLake的殖民地鞭毛虫的隔离和表征,加州鞭毛虫形成大的球形菌落,比密切相关的鞭毛虫Salpingoecarosetta形成的菌落大一个数量级。在实验室维持的培养物中,球形菌落的内腔充满了细胞外基质的分支网络,并被细菌定植,包括不同的γ变形杆菌和α变形杆菌。我们建议竖立Barroecamonosierragen。11月。,sp.11月。Hake,Burkhardt,Richter,和国王来容纳这种极端微生物鞭毛虫。培养中细菌与B.monosierra之间的物理关联为研究细菌与真核生物之间的相互作用提供了新的实验模型。未来的工作将研究野生种群中这些相互作用的性质以及细菌对B.monosierra球体定植的机制。
    目标:生活在莫诺湖极端环境中的生物的多样性(加利福尼亚州,美国)是有限的。我们试图调查动物的近亲,鞭毛虫,存在于莫诺湖,一种高盐,碱性,富砷环境。我们反复分离了一种新型鞭毛虫的成员,我们将其命名为Barroecamonosierra。B.monosierra的表征表明,它形成含有不同的共同分离细菌的大球形菌落,为研究真核生物和细菌之间物理关联的潜在机制提供了机会。
    As the closest living relatives of animals, choanoflagellates offer insights into the ancestry of animal cell physiology. Here, we report the isolation and characterization of a colonial choanoflagellate from Mono Lake, California. The choanoflagellate forms large spherical colonies that are an order of magnitude larger than those formed by the closely related choanoflagellate Salpingoeca rosetta. In cultures maintained in the laboratory, the lumen of the spherical colony is filled with a branched network of extracellular matrix and colonized by bacteria, including diverse Gammaproteobacteria and Alphaproteobacteria. We propose to erect Barroeca monosierra gen. nov., sp. nov. Hake, Burkhardt, Richter, and King to accommodate this extremophile choanoflagellate. The physical association between bacteria and B. monosierra in culture presents a new experimental model for investigating interactions among bacteria and eukaryotes. Future work will investigate the nature of these interactions in wild populations and the mechanisms underpinning the colonization of B. monosierra spheres by bacteria.
    OBJECTIVE: The diversity of organisms that live in the extreme environment of Mono Lake (California, USA) is limited. We sought to investigate whether the closest living relatives of animals, the choanoflagellates, exist in Mono Lake, a hypersaline, alkaline, arsenic-rich environment. We repeatedly isolated members of a new species of choanoflagellate, which we have named Barroeca monosierra. Characterization of B. monosierra revealed that it forms large spherical colonies containing diverse co-isolated bacteria, providing an opportunity to investigate mechanisms underlying physical associations between eukaryotes and bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们讨论了推动多细胞性出现的两种主要机制的数学模型:细胞分化和细胞间合作的表型差异。根据癌症的返祖理论,这种疾病是多细胞动物特有的,我们特别强调这两种机制是如何逆转的,然而并没有完全受损,相当被劫持,在肿瘤细胞群体中。考虑了两种设置:完全创新,修补,物种进化中出现多细胞的情况,我们假设它受到细胞群体外部压力的限制,以及从受精卵发育中的多细胞动物的生理构造的完全计划的身体计划情况,或者肿瘤中的赌注对冲,假设是克隆形成的,尽管身体计划在其构成细胞中很大程度上但并非完全丧失。我们展示了癌症如何影响这两种设置,并为它们绘制数学模型。我们在这里以生物学为背景,提出我们对这个问题的贡献,从数学和科学哲学。
    We discuss the mathematical modelling of two of the main mechanisms that pushed forward the emergence of multicellularity: phenotype divergence in cell differentiation and between-cell cooperation. In line with the atavistic theory of cancer, this disease being specific of multicellular animals, we set special emphasis on how both mechanisms appear to be reversed, however not totally impaired, rather hijacked, in tumour cell populations. Two settings are considered: the completely innovating, tinkering, situation of the emergence of multicellularity in the evolution of species, which we assume to be constrained by external pressure on the cell populations, and the completely planned-in the body plan-situation of the physiological construction of a developing multicellular animal from the zygote, or of bet hedging in tumours, assumed to be of clonal formation, although the body plan is largely-but not completely-lost in its constituting cells. We show how cancer impacts these two settings and we sketch mathematical models for them. We present here our contribution to the question at stake with a background from biology, from mathematics and from philosophy of science.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数生物拥有三种生物振荡器,生物钟,细胞周期,和氧化还原节律,它们是自主的,但相互作用。然而,它们的相互作用和自主性是否对生物体有益尚不清楚。这里,我们建模了一个耦合振荡器系统,其中每个振荡器影响其他振荡器的相位。我们发现,多种类型的偶联可以防止M期细胞中的高H2O2水平。因此,我们假设在M期H2O2敏感性较高,并发现适度的耦合通过在三个节律之间产生适当的相位关系来减少由于氧化应激引起的细胞损伤。而强耦合通过增加平均H2O2水平并破坏细胞周期而导致细胞损伤升高。此外,多细胞模型表明,细胞之间的相位变化赋予与环境同步的灵活性,以牺牲对最佳环境的适应性为代价。因此,振荡器之间的自主性和同步性对于协调它们的相位关系以最小化氧化应激是重要的,和联轴器根据环境来平衡它们。
    Most organisms possess three biological oscillators, circadian clock, cell cycle, and redox rhythm, which are autonomous but interact each other. However, whether their interactions and autonomy are beneficial for organisms remains unclear. Here, we modeled a coupled oscillator system where each oscillator affected the phase of the other oscillators. We found that multiple types of coupling prevent a high H2O2 level in cells at M phase. Consequently, we hypothesized a high H2O2 sensitivity at the M phase and found that moderate coupling reduced cell damage due to oxidative stress by generating appropriate phase relationships between three rhythms, whereas strong coupling resulted in an elevated cell damage by increasing the average H2O2 level and disrupted the cell cycle. Furthermore, the multicellularity model revealed that phase variations among cells confer flexibility in synchronization with environments at the expense of adaptability to the optimal environment. Thus, both autonomy and synchrony among the oscillators are important for coordinating their phase relationships to minimize oxidative stress, and couplings balance them depending on environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    多细胞谱系的生态和进化成功在很大程度上归因于它们相对于单细胞祖先的大小增加。然而,大尺寸也带来了生物物理挑战,特别是关于营养物质向所有细胞的运输;这些限制通常通过多细胞创新来克服(例如,循环系统)。在这里,我们显示了一种新兴的生物物理机制-代谢产生的密度梯度产生的自发流体流动-可以减轻对营养运输的限制,在缺乏营养运输或流体流动的多细胞适应性的新生酵母簇中实现指数生长。令人惊讶的是,超出阈值大小,实验进化的雪花酵母簇的代谢活动驱动了大规模的流体流动,这些流体以与现有多细胞生物纤毛产生的速度相当的速度在整个簇中运输营养。这些流动支持宏观尺寸的指数增长,理论预测应该是扩散限制的。这项工作证明了简单的物理机制如何充当“生物物理支架”,通过在遗传编码的创新之前打开表型可能性来支持多细胞的进化。更广泛地说,我们的发现强调了保守物理过程的协同作用是跨尺度进化创新的一个关键但未被重视的方面。
    The ecological and evolutionary success of multicellular lineages is due in no small part to their increased size relative to unicellular ancestors. However, large size also poses biophysical challenges, especially regarding the transport of nutrients to all cells; these constraints are typically overcome through multicellular innovations (e.g., a circulatory system). Here we show that an emergent biophysical mechanism - spontaneous fluid flows arising from metabolically-generated density gradients - can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Surprisingly, beyond a threshold size, the metabolic activity of experimentally-evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by the cilia of extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This work demonstrates how simple physical mechanisms can act as a \'biophysical scaffold\' to support the evolution of multicellularity by opening up phenotypic possibilities prior to genetically-encoded innovations. More broadly, our findings highlight how co-option of conserved physical processes is a crucial but underappreciated facet of evolutionary innovation across scales.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分子和化石证据表明,复杂的真核多细胞在新元古代晚期进化,与雪球地球冰川相吻合,冰盖覆盖了地球的大部分地区。在此期间,环境条件-例如海水温度和海洋中光合活性光的可用性-可能发生了巨大变化。这种变化将对资源可用性和最佳表型产生重大影响。这里,我们构建并应用机械模型来探索(I)雪球地球期间的环境变化和生物物理约束如何产生选择性压力,以及(ii)这些压力如何对具有不同生物组织形式的生物体产生不同的影响。通过测试一系列替代和通常有争议的假设,我们证明了真核生物和原核生物中的多细胞性可能是如何不同地获得的,这是由于它们所居住的生物物理和代谢机制造成的大小选择性差异:冰川开始引起的温度降低和资源可用性产生了向扩散状态中的生物中的小尺寸和向活动的异养生物中的大尺寸的选择性压力。这些结果表明,雪球地球冰川期间环境条件的变化给多细胞真核生物带来了进化优势,为随后复杂的多细胞谱系铺平了道路。
    Molecular and fossil evidence suggests that complex eukaryotic multicellularity evolved during the late Neoproterozoic era, coincident with Snowball Earth glaciations, where ice sheets covered most of the globe. During this period, environmental conditions-such as seawater temperature and the availability of photosynthetically active light in the oceans-likely changed dramatically. Such changes would have had significant effects on both resource availability and optimal phenotypes. Here, we construct and apply mechanistic models to explore (i) how environmental changes during Snowball Earth and biophysical constraints generated selective pressures, and (ii) how these pressures may have had differential effects on organisms with different forms of biological organization. By testing a series of alternative-and commonly debated-hypotheses, we demonstrate how multicellularity was likely acquired differently in eukaryotes and prokaryotes owing to selective differences on their size due to the biophysical and metabolic regimes they inhabit: decreasing temperatures and resource availability instigated by the onset of glaciations generated selective pressures towards smaller sizes in organisms in the diffusive regime and towards larger sizes in motile heterotrophs. These results suggest that changing environmental conditions during Snowball Earth glaciations gave multicellular eukaryotes an evolutionary advantage, paving the way for the complex multicellular lineages that followed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    所有尺度的生命系统都被划分为相互作用的子系统。本文回顾了一种在任何规模的通用系统中驱动划分的机制。它首先在量子理论描述中讨论了通用物理相互作用的三种对称性。然后它表明,如果其中一个,系统间边界上的置换对称,是自发破碎的,自由能原理(FEP)放大了对称性破缺。因此,它显示了FEP下的置换对称性破坏通常是如何产生区隔的。最后指出,FEP渐近地恢复了被破坏的对称性,表明FEP可以被视为远离置换对称边界的波动理论,因此来自相互作用系统的纠缠联合状态。
    Living systems at all scales are compartmentalized into interacting subsystems. This paper reviews a mechanism that drives compartmentalization in generic systems at any scale. It first discusses three symmetries of generic physical interactions in a quantum-theoretic description. It then shows that if one of these, a permutation symmetry on the inter-system boundary, is spontaneously broken, the symmetry breaking is amplified by the Free Energy Principle (FEP). It thus shows how compartmentalization generically results from permutation symmetry breaking under the FEP. It finally notes that the FEP asymptotically restores the broken symmetry, showing that the FEP can be regarded as a theory of fluctuations away from a permutation-symmetric boundary, and hence from an entangled joint state of the interacting systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    没有细胞分离的细胞分裂在出芽酵母中产生多细胞簇。这些簇的两个基本特征是它们的大小(每个簇的细胞数量)和细胞组成:具有不同表型的细胞分数。使用单元格作为节点,并使用母单元格和子单元格之间的链接作为边,我们通过改变三个参数来建模集群生长和断裂:细胞分裂率,细胞间连接中断的速率,和接吻数(连接到一个细胞的最大数量)。我们发现接吻数设定了最大可能的簇大小。低于这个限制,细胞分裂率与连接中断率的比值决定了簇的大小。如果链路在单位时间内具有恒定的断裂概率,链接生存的概率随着其年龄呈指数下降。对该行为建模概括了实验数据。然后我们使用这个框架来检查合成的,区分具有两种细胞类型的簇,生长更快的生殖细胞及其体细胞衍生物。包含两种细胞类型的簇的比例随着两个参数之一的增加而增加:接吻数量以及生殖细胞和体细胞的生长速率之间的差异。在一群集群中,细胞组成的变化与集群中体细胞的平均分数成反比(r2=0.87)。我们的结果表明,少数细胞特征如何控制多细胞簇的表型,这些簇可能是更复杂形式的多细胞发育的祖先,组织,和繁殖。
    Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2 = 0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    普遍的观点是,未分化的干细胞仅负责产生所有其他细胞,并且是癌症的起源。然而,新的证据表明完全分化的细胞是可塑的,可以被引诱扩散,并在组织维护中发挥重要作用,再生,和肿瘤发生。这里,我们回顾了分化细胞如何成为癌细胞的机制。首先,我们研究了分化细胞分裂的独特特征,关注为什么分化的细胞比干细胞更容易积累突变。接下来,我们研究了为什么动物的多细胞进化可能需要塑料分化的细胞,这些细胞保持了返回细胞周期的能力,并且需要肿瘤抑制因子p53。最后,我们研究了一个进化上保守的分化细胞可塑性程序的例子,Paligenosis,这有助于解释成人癌症的起源。总之,我们强调理解癌症发展的新观点和防止致癌细胞转化发生的新策略。
    A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大型藻类是多细胞的,水生自养生物在全球气候维护中起着至关重要的作用,并在生物技术和生态工程中具有多种应用,与它们的多细胞表型直接相关。然而,它们的基因组多样性和这些生物多细胞的进化机制仍然没有被描述。在这项研究中,我们对来自不同气候和门的110个巨藻基因组进行了测序,并确定了将它们与微藻亲属区分开的关键基因组特征。细胞粘附的基因,细胞外基质形成,细胞极性,运输,和细胞分化区分大型藻类和微藻在所有三个主要的门,构成支持多细胞过程的保守和独特的基因集。Adhesome基因显示出特定于页和气候的扩展,这可能有助于生态位适应。总的来说,我们的研究揭示了汇聚和发散进化轨迹的遗传决定因素,这些进化轨迹塑造了大型藻类的形态多样性,并提供了全基因组框架来理解水生环境中的光合多细胞进化。
    Macroalgae are multicellular, aquatic autotrophs that play vital roles in global climate maintenance and have diverse applications in biotechnology and eco-engineering, which are directly linked to their multicellularity phenotypes. However, their genomic diversity and the evolutionary mechanisms underlying multicellularity in these organisms remain uncharacterized. In this study, we sequenced 110 macroalgal genomes from diverse climates and phyla, and identified key genomic features that distinguish them from their microalgal relatives. Genes for cell adhesion, extracellular matrix formation, cell polarity, transport, and cell differentiation distinguish macroalgae from microalgae across all three major phyla, constituting conserved and unique gene sets supporting multicellular processes. Adhesome genes show phylum- and climate-specific expansions that may facilitate niche adaptation. Collectively, our study reveals genetic determinants of convergent and divergent evolutionary trajectories that have shaped morphological diversity in macroalgae and provides genome-wide frameworks to understand photosynthetic multicellular evolution in aquatic environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号