Mucopolysaccharidosis III

粘多糖贮积症 III
  • 文章类型: Journal Article
    Sanfilippo综合征,或III型粘多糖贮积症(MPSIII),是由硫酸乙酰肝素(HS)降解的先天性酶缺乏引起的罕见溶酶体疾病,导致器官功能障碍.MPSIII最严重的标志包括神经系统改变,尽管胃肠道症状(GISs)也被证明与许多患者有关。这里,我们探讨了肠道微生物群对MPSIIIGIS的贡献。我们分析了两个具有相同突变的MPSIII兄弟姐妹的肠道微生物群的组成和功能(c.544C>T,c.1080delC,在SGSH基因中)和相同的饮食,但是他们的GIS不同,其中之一包括反复腹泻。使用16S测序,我们观察到,与健康对照组相比,MPSIII患者的α多样性降低,落叶松科和双歧杆菌科的丰度降低,并伴有更高的Ruminococcaceae和Rikenellaceae家族的丰度。比较兄弟姐妹,我们发现在无GIS的患者中,拟杆菌科的丰度增加,而反刍动物科和阿克曼根科的丰度降低。该患者的Sus基因相对丰度也较高(SusA,Susb,Suse,和SusG)参与糖胺聚糖代谢。我们发现两名MPSIII患者的粪便中的HS水平高于健康志愿者,尤其是患有GIS的患者。功能上,来自患有GISs的患者的整个粪便代谢物在体外诱导健康单核细胞的氧化应激。最后,从MPSIII粪便样品中分离出的拟杆菌菌株具有HS降解能力。总的来说,我们的结果揭示了MPSIII兄弟姐妹中不同的微生物群组成和功能,表现出不同的胃肠道症状。我们的研究可以作为探索肠道微生物群的影响及其提高Sanfilippo综合征患者生活质量的潜力的门户。
    Sanfilippo syndrome, or mucopolysaccharidosis type III (MPS III), is a rare lysosomal disease caused by congenital enzymatic deficiencies in heparan sulfate (HS) degradation, leading to organ dysfunction. The most severe hallmark of MPS III comprises neurological alterations, although gastrointestinal symptoms (GISs) have also been shown to be relevant in many patients. Here, we explored the contribution of the gut microbiota to MPS III GISs. We analyzed the composition and functionality of the gut microbiota in two MPS III siblings with the same mutation (c.544C > T, c.1080delC, in the SGSH gene) and the same diet, but with differences in their GISs, including recurrent diarrhea in one of them. Using 16S sequencing, we observed that the MPS III patients exhibited decreased alpha diversity and a lower abundance of Lachnospiraceae and Bifidobacteriaceae accompanied by a higher abundance of the Ruminococcaceae and Rikenellaceae families than the healthy control subjects. Comparing siblings, we found an increased abundance of Bacteroidaceae and a lower abundance of Ruminococcaceae and Akkermansiaceae in the GIS-free patient. This patient also had a higher relative abundance of Sus genes (SusA, SusB, SusE, and SusG) involved in glycosaminoglycan metabolism. We found higher HS levels in the stool of the two MPS III patients than in healthy volunteers, particularly in the patient with GISs. Functionally, whole fecal metabolites from the patient with GISs induced oxidative stress in vitro in healthy monocytes. Finally, the Bacteroides thetaiotaomicron strain isolated from MPS III stool samples exhibited HS degradation ability. Overall, our results reveal different microbiota compositions and functionalities in MPS III siblings, who exhibited differential gastrointestinal symptomatology. Our study may serve as a gateway to explore the impact of the gut microbiota and its potential to enhance the quality of life in Sanfilippo syndrome patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:Sanfilippo综合征(IIIA型粘多糖贮积症;MPSIIIA)是由磺酰胺酶基因的遗传突变引起的儿童痴呆。目前,没有治疗方法,患有经典疾病的儿童通常在青少年晚期死亡。在人体临床试验中正在检查静脉或脑脊液(CSF)注射AAV9基因替代;对脑部疾病的影响的评估是一个重点;然而,MPSIIIA患者也体会深刻,进行性光感受器丧失,导致夜盲症。
    目的:比较两种治疗方法对MPSIIIA小鼠视网膜变性的相对疗效。
    方法:新生小鼠接受静脉内或CSF内AAV9-磺酰胺酶或载体,20周后,进行了神经视网膜完整性的生化和组织学评估。
    结果:两种治疗方法均可改善视网膜中央厚度;然而,在周边视网膜,外核层厚度和感光细胞长度仅通过i.v.基因置换显着提高。Further,仅在静脉内基因递送后观察到内溶酶体区室大小和小胶质细胞形态的正常化。
    结论:需要对成年小鼠进行验证性研究;然而,这些数据表明静脉内输注AAV9-磺酰胺酶导致神经视网膜的优越结局,脑脊液递送的AAV9可能需要补充另一种治疗方法,以获得最佳患者生活质量。
    BACKGROUND: Sanfilippo syndrome (mucopolysaccharidosis type IIIA; MPS IIIA) is a childhood dementia caused by inherited mutations in the sulfamidase gene. At present, there is no treatment and children with classical disease generally die in their late teens. Intravenous or intra-cerebrospinal fluid (CSF) injection of AAV9-gene replacement is being examined in human clinical trials; evaluation of the impact on brain disease is an intense focus; however, MPS IIIA patients also experience profound, progressive photoreceptor loss, leading to night blindness.
    OBJECTIVE: To compare the relative efficacy of the two therapeutic approaches on retinal degeneration in MPS IIIA mice.
    METHODS: Neonatal mice received i.v. or intra-CSF AAV9-sulfamidase or vehicle and after 20 weeks, biochemical and histological evaluation of neuroretina integrity was carried out.
    RESULTS: Both treatments improved central retinal thickness; however, in peripheral retina, outer nuclear layer thickness and photoreceptor cell length were only significantly improved by i.v. gene replacement. Further, normalization of endo-lysosomal compartment size and microglial morphology was only observed following intravenous gene delivery.
    CONCLUSIONS: Confirmatory studies are needed in adult mice; however, these data indicate that i.v. AAV9-sulfamidase infusion leads to superior outcomes in neuroretina, and cerebrospinal fluid-delivered AAV9 may need to be supplemented with another therapeutic approach for optimal patient quality of life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    MPSIIIC是由乙酰肝素-α-氨基葡萄糖苷N-乙酰转移酶(HGSNAT)突变引起的溶酶体贮积病,没有可用的治疗方法。因为HGSNAT是一种反式溶酶体膜蛋白,MPSIIIC的基因治疗需要转导尽可能多的细胞以获得最大的益处.所有细胞连续释放细胞外囊泡(EV)并通过经由EV运输交换生物分子进行通信。为了解决未满足的需求,我们开发了一种rAAV-hHGSNATEV载体,在3UTR中具有EV-mRNA包装信号,以促进旁观者效应,并在体外MPSIIIC模型中进行了测试。在人类MPSIIIC细胞中,rAAV-hHGSNATEV增强HGSNATmRNA和蛋白表达,EV-hHGSNAT-mRNA包装,并清除了GAG存储。重要的是,用EV孵育导致受体MPSIIIC细胞中hHGSNAT蛋白表达和GAG内容物清除。Further,rAAV-hHGSNATEV转导导致MPSIIIC细胞中病理性EV降低至正常水平,表明更广泛的治疗益处。这些数据表明,将EV-mRNA包装信号掺入rAAV-hHGSNAT载体可增强hHGSNAT-mRNA的EV包装,可以转运到非转导细胞并翻译成功能性rHGSNAT蛋白,促进疾病病理的交叉矫正。这项研究支持rAAVEV对MPSIIIC的治疗潜力,和广泛的疾病,不必转导每个细胞。
    MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3\'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硫酸乙酰肝素(HS)在溶酶体中被一系列糖苷酶降解。在糖苷酶发挥作用之前,HS的末端葡糖胺必须被整合的溶酶体膜酶乙酰肝素-α-氨基葡萄糖胺N-乙酰转移酶(HGSNAT)乙酰化。HGSNAT突变会导致HS积累,从而导致粘多糖贮积症IIIC,一种破坏性的溶酶体贮积病,其特征是进行性神经系统恶化和早期死亡,没有治疗方法。HGSNAT催化独特的跨膜乙酰化反应,其中胞质乙酰辅酶A的乙酰基通过溶酶体膜转运并在一个反应中连接到HS。然而,反应机理仍然难以捉摸。在这里,我们报告了HGSNAT沿反应途径的六个cryo-EM结构。这些结构揭示了二聚体排列和独特的结构折叠,这使得能够阐明反应机理。我们发现,每个单体中的中央孔穿过膜,并控制胞质乙酰辅酶A进入其腔口中与葡糖胺结合的活性位点。组氨酸-天冬氨酸催化二元通过三元络合物机理催化转移反应。此外,这些结构允许绘制致病变异,并揭示它们对功能的潜在影响,从而创建一个框架来指导基于结构的药物发现工作。
    Heparan sulfate (HS) is degraded in lysosome by a series of glycosidases. Before the glycosidases can act, the terminal glucosamine of HS must be acetylated by the integral lysosomal membrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT). Mutations of HGSNAT cause HS accumulation and consequently mucopolysaccharidosis IIIC, a devastating lysosomal storage disease characterized by progressive neurological deterioration and early death where no treatment is available. HGSNAT catalyzes a unique transmembrane acetylation reaction where the acetyl group of cytosolic acetyl-CoA is transported across the lysosomal membrane and attached to HS in one reaction. However, the reaction mechanism remains elusive. Here we report six cryo-EM structures of HGSNAT along the reaction pathway. These structures reveal a dimer arrangement and a unique structural fold, which enables the elucidation of the reaction mechanism. We find that a central pore within each monomer traverses the membrane and controls access of cytosolic acetyl-CoA to the active site at its luminal mouth where glucosamine binds. A histidine-aspartic acid catalytic dyad catalyzes the transfer reaction via a ternary complex mechanism. Furthermore, the structures allow the mapping of disease-causing variants and reveal their potential impact on the function, thus creating a framework to guide structure-based drug discovery efforts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    粘多糖贮积症IIIA型(MPSIIIA)是一种罕见的小儿溶酶体贮积症,由硫酸乙酰肝素的逐渐积累引起,导致神经认知能力下降和行为异常。儿科医生的轶事报告表明MPSIIIA患者的神经变性更严重,感染后,提示炎症是神经病理学的潜在驱动因素。为了检验这个假设,我们进行了急性研究,其中WT和MPSIIIA小鼠受到TLR3依赖性病毒模拟物poly(I:C)的攻击.急性高聚(I:C)剂量的挑战加剧了全身和脑细胞因子的表达,尤其是海马中的IL-1β。这伴随着MPSIIIA小鼠脑内caspase-1活性的增加,伴随着海马GFAP和NeuN表达的丧失。类似水平的细胞损伤,连同神经胶质增生的恶化,在低慢性聚(I:C)给药后的MPSIIIA小鼠中也观察到。虽然需要进一步研究以充分了解IL-1β参与MPSIIIA加剧的神经变性的程度,我们的数据有力地加强了我们之前的发现,表明IL-1β是MPSIIIA神经病理过程的关键催化剂。
    Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    IIIB型粘多糖贮积症(MPSIIIB)是一种常染色体遗传性疾病,由编码溶酶体酶N-乙酰-α-氨基葡萄糖苷酶(NAGLU)的基因突变引起。这些突变导致NAGLU活性降低,防止其催化糖胺聚糖硫酸乙酰肝素(HS)的水解。目前没有批准的MPSIIIB治疗方法。治疗溶酶体贮积病的新方法是使用药物伴侣(PC)。在这项研究中,我们使用药物再利用的方法来鉴定和表征NAGLU酶的新型潜在PCs。我们对NAGLU(正构位点)的活动腔内天然和人工基质的相互作用进行了建模,并预测了潜在的变构位点。我们针对人类测试分子的精选数据库对正构和预测的变构位点进行了虚拟筛选。考虑到结合亲和力和预测的血脑屏障通透性和胃肠道吸收,我们选择了atovaquone和哌喹作为正构和变构PCs。通过其结合NAGLU的能力和恢复人MPSIIIB成纤维细胞中酶活性的能力来评估PC。这些结果代表了针对MPSIIIB描述的新型PC,并证明了开发用于这种和其他蛋白质缺陷疾病的新型治疗替代方法的潜力。
    Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MPSIII是一种常染色体隐性遗传性溶酶体贮积病,主要由NAGLU中的错义变异引起,GNS,HGSNAT,和SGSH基因。错义变体的致病性解释仍然具有挑战性。我们旨在使用从八个计算机预测因子中提取的特征来开发基于无监督聚类的致病性预测因子评分,以预测Sanfilippo综合征的新型错义变异的影响。在由415个不确定显著(VUS)错义NAGLU变体组成的数据集上训练模型。性能通过由197个标记的NAGLU错义变体组成的验证和测试数据集来评估Sanfilippord工具,并使用接受者工作特征(ROC)分析将其性能与个体致病性预测因子进行比较。此外,我们使用额外标记的427个错义变异体测试了SanfilippoPred工具,以评估其特异性和敏感性阈值.在标记的NAGLU错义变体的测试数据集上应用经过训练的机器学习(ML)模型表明,SanfilippoPred的准确性为0.93(0.86-0.97atCI95%),敏感性为0.93,特异性为0.92。SanfilippoPred的比较性能显示出比单个预测因子SIFT(AUC=0.756)更好的性能(AUC=0.908),Polyphen-2(AUC=0.788),CADD(AUC=0.568),REVEL(AUC=0.548),MetaLR(AUC=0.751),和字母意义(AUC=0.885)。使用高置信度标记的NAGLU变体,显示SanfilippoPred具有85.7%的灵敏度阈值。Sanfilippo综合征表型与基因型之间的相关性较差,这表明需要一种新的工具来对其错义变体进行分类。这项研究为防止Sanfilippo综合征相关基因的错义变体的误解提供了重要工具。最后,似乎基于ML的致病性预测因子和Sanfilippo综合征特异性预测工具在未来可能是可行且有效的致病性预测因子.
    MPS III is an autosomal recessive lysosomal storage disease caused mainly by missense variants in the NAGLU, GNS, HGSNAT, and SGSH genes. The pathogenicity interpretation of missense variants is still challenging. We aimed to develop unsupervised clustering-based pathogenicity predictor scores using extracted features from eight in silico predictors to predict the impact of novel missense variants of Sanfilippo syndrome. The model was trained on a dataset consisting of 415 uncertain significant (VUS) missense NAGLU variants. Performance The SanfilippoPred tool was evaluated by validation and test datasets consisting of 197-labelled NAGLU missense variants, and its performance was compared versus individual pathogenicity predictors using receiver operating characteristic (ROC) analysis. Moreover, we tested the SanfilippoPred tool using extra-labelled 427 missense variants to assess its specificity and sensitivity threshold. Application of the trained machine learning (ML) model on the test dataset of labelled NAGLU missense variants showed that SanfilippoPred has an accuracy of 0.93 (0.86-0.97 at CI 95%), sensitivity of 0.93, and specificity of 0.92. The comparative performance of the SanfilippoPred showed better performance (AUC = 0.908) than the individual predictors SIFT (AUC = 0.756), Polyphen-2 (AUC = 0.788), CADD (AUC = 0.568), REVEL (AUC = 0.548), MetaLR (AUC = 0.751), and AlphMissense (AUC = 0.885). Using high-confidence labelled NAGLU variants, showed that SanfilippoPred has an 85.7% sensitivity threshold. The poor correlation between the Sanfilippo syndrome phenotype and genotype represents a demand for a new tool to classify its missense variants. This study provides a significant tool for preventing the misinterpretation of missense variants of the Sanfilippo syndrome-relevant genes. Finally, it seems that ML-based pathogenicity predictors and Sanfilippo syndrome-specific prediction tools could be feasible and efficient pathogenicity predictors in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    粘多糖贮积症III型C(MPSIIIC)是由溶酶体N-乙酰转移酶的遗传缺陷引起的一种无法治疗的神经性溶酶体贮积病,HGSNAT,催化硫酸乙酰肝素的跨膜乙酰化。HGSNAT是一种跨膜酶,不能在细胞之间自由扩散或交叉校正,这限制了基于酶替代和基因校正的疗法的发展。由于我们以前的工作确定神经炎症是MPSIIIC中枢神经系统病理学的标志,我们测试了是否可以通过用来自异源HSPC移植的神经保护性巨噬细胞/小胶质细胞替代活化的脑小胶质细胞来纠正它.八周大的MPSIIIC(HgsnatP304L)小鼠在用白消安进行骨髓消融术后从同基因野生型小鼠中移植HSPC,并使用行为测试电池进行研究,从6个月的年龄开始。在〜8个月的年龄,处死小鼠以研究大脑的病理变化,硫酸乙酰肝素储存,和其他疾病的生物标志物。我们发现治疗纠正了一些行为缺陷,包括多动和社交减少,但不是记忆力下降。它还改善了中枢神经系统病理学的一些特征,如微星形胶质细胞增多症,促炎细胞因子IL-1β的表达,和皮质神经元中错误折叠的淀粉样蛋白聚集体的积累。在外围,治疗延迟了终端尿潴留的发展,可能会延长寿命,和降低血液中硫酸乙酰肝素的水平。然而,我们没有观察到神经元和硫酸乙酰肝素脑水平的溶酶体储存表型的校正.一起,我们的结果表明,神经溶酶体贮积病中的神经炎症,由跨膜酶的缺陷引起的,可以通过用正常健康供体的细胞替代带有遗传缺陷的小胶质细胞来有效改善。他们还建议异源HSPC移植,如果与其他方法一起使用,如伴侣疗法或底物减少疗法,可能是MPSIIIC和其他病因相似的疾病的有效联合治疗。
    Mucopolysaccharidosis III type C (MPS IIIC) is an untreatable neuropathic lysosomal storage disease caused by a genetic deficiency of the lysosomal N-acetyltransferase, HGSNAT, catalyzing a transmembrane acetylation of heparan sulfate. HGSNAT is a transmembrane enzyme incapable of free diffusion between the cells or their cross-correction, which limits development of therapies based on enzyme replacement and gene correction. Since our previous work identified neuroinflammation as a hallmark of the CNS pathology in MPS IIIC, we tested whether it can be corrected by replacement of activated brain microglia with neuroprotective macrophages/microglia derived from a heterologous HSPC transplant. Eight-week-old MPS IIIC (HgsnatP304L) mice were transplanted with HSPC from congenic wild type mice after myeloablation with Busulfan and studied using behavior test battery, starting from the age of 6 months. At the age of ~8 months, mice were sacrificed to study pathological changes in the brain, heparan sulfate storage, and other biomarkers of the disease. We found that the treatment corrected several behavior deficits including hyperactivity and reduction in socialization, but not memory decline. It also improved several features of CNS pathology such as microastroglyosis, expression of pro-inflammatory cytokine IL-1β, and accumulation of misfolded amyloid aggregates in cortical neurons. At the periphery, the treatment delayed development of terminal urinary retention, potentially increasing longevity, and reduced blood levels of heparan sulfate. However, we did not observe correction of lysosomal storage phenotype in neurons and heparan sulfate brain levels. Together, our results demonstrate that neuroinflammation in a neurological lysosomal storage disease, caused by defects in a transmembrane enzyme, can be effectively ameliorated by replacement of microglia bearing the genetic defect with cells from a normal healthy donor. They also suggest that heterologous HSPC transplant, if used together with other methods, such as chaperone therapy or substrate reduction therapy, may constitute an effective combination therapy for MPS IIIC and other disorders with a similar etiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sanfilippo综合征是一种儿童期(1-4年)常染色体隐性遗传溶酶体贮积症,通过靶向脑和脊髓表现为神经退行性疾病。它也被称为粘多糖贮积症III。粘多糖贮积症III分为四个亚型(A,B,C,orD).它会导致说话延迟,行为问题,和自闭症谱系障碍的特征。Sanfilippo综合征在携带其基因改变的近亲家庭中患病率较高。如果父母双方都有与这种情况相关的基因的非功能拷贝,他们的孩子将有25%(四分之一)的机会患上这种疾病。在沙特阿拉伯,发病率估计为每100,000例活产中有2例。最近的研究集中在有希望的治疗方法,比如基因治疗,改良酶替代疗法,和干细胞。这些方法通过外源施用适当版本的突变酶(酶替代疗法)起作用,清除糖脂贮积障碍患者体内有缺陷的酶(底物减少疗法),或使用药物伴侣靶向折叠不当的蛋白质。然而,目前尚无可有效阻止或逆转Sanfilippo综合征的批准治疗药物.
    Sanfilippo syndrome is a childhood-onset (1-4 years) autosomal recessive lysosomal storage disease that presents as a neurodegenerative disease by targeting the brain and spinal cord. It is also known as mucopolysaccharidosis III. Mucopolysaccharidosis III is divided into four subtypes (A, B, C, or D). It can cause delayed speech, behavior problems, and features of autism spectrum disorder. Sanfilippo syndrome is of a higher prevalence within consanguineous families that carry its gene alteration. If both parents have a nonfunctional copy of a gene linked to this condition, their children will have a 25% (1 in 4) chance of developing the disease. In Saudi Arabia, the incidence rate is estimated at 2 per 100,000 live births. Recent research focused on promising treatment approaches, such as gene therapy, modified enzyme replacement therapy, and stem cells. These approaches work by exogenous administration of the proper version of the mutant enzyme (enzyme replacement therapy), cleaning the defective enzyme in individuals with glycolipid storage disorders (substrate reduction therapy), or using a pharmacological chaperone to target improperly folded proteins. However, there is currently no approved curative medication for Sanfilippo syndrome that can effectively halt or reverse the disorder.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:粘多糖贮积症(MPS)IIIB,也被称为Sanfilippo综合症B,是一种毁灭性的儿童疾病。不幸的是,目前尚无MPSIIIB患者的可用治疗方法.然而,溶酶体贮积病的动物模型是确定有希望的治疗途径的有价值的工具。酶替代疗法,基因治疗,和骨髓移植在MPSIIIB模型系统中均显示出功效。在溶酶体贮积病的啮齿动物模型中普遍存在的发现是,最佳治疗结果是在症状发作之前进行干预。因此,本研究的目的是在MPSIIIB小鼠模型中鉴定疾病的早期标志物,并检查该模型中尚未探索的临床相关行为领域.
    方法:使用MPSIIIB小鼠模型,我们探索了沟通和步态的早期发展轨迹,以及后来的社会行为,与恐惧有关的惊吓和条件反射,和视觉能力。此外,我们通过磁共振成像和弥散张量成像检查了大脑结构和功能。
    结果:我们观察到MPSIIIB小鼠中母体隔离引起的超声发声相对于对照组减少,以及许多光谱特征的中断。MPSIIIB在出生后的前两周也表现出体温调节中断,体重没有任何差异。步态的发育轨迹基本正常。在成年早期,我们观察到完整的视力和社交能力,但更顺从的表型,攻击行为增加,和减少社会嗅探相对于控制。MPSIIIB小鼠对一种pretone的反应表现出更大的惊吓抑制作用,总体惊吓反应降低,提示恐惧记忆降低。MPSIIIB在整个成年期的体重也明显高于对照组,并且通过磁共振和扩散张量成像测量显示更大的全脑体积和具有完整组织完整性的标准化区域体积。分别。
    结论:一起,这些结果表明,在该模型中,疾病标志物早在出生后的前两周就存在。Further,这个模型概括了社会,感觉和恐惧相关的临床特征。我们使用MPSIIIB小鼠模型的研究提供了必要的基线信息,这些信息将在未来对潜在治疗的评估中有用。
    BACKGROUND: Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment. Enzyme replacement therapy, gene therapy, and bone marrow transplant have all shown efficacy in the MPS IIIB model systems. A ubiquitous finding across rodent models of lysosomal storage diseases is that the best treatment outcomes resulted from intervention prior to symptom onset. Therefore, the aim of the current study was to identify early markers of disease in the MPS IIIB mouse model as well as examine clinically-relevant behavioral domains not yet explored in this model.
    METHODS: Using the MPS IIIB mouse model, we explored early developmental trajectories of communication and gait, and later social behavior, fear-related startle and conditioning, and visual capabilities. In addition, we examined brain structure and function via magnetic resonance imaging and diffusion tensor imaging.
    RESULTS: We observed reduced maternal isolation-induced ultrasonic vocalizations in MPS IIIB mice relative to controls, as well as disruption in a number of the spectrotemporal features. MPS IIIB also exhibited disrupted thermoregulation during the first two postnatal weeks without any differences in body weight. The developmental trajectories of gait were largely normal. In early adulthood, we observed intact visual acuity and sociability yet a more submissive phenotype, increased aggressive behavior, and decreased social sniffing relative to controls. MPS IIIB mice showed greater inhibition of startle in response to a pretone with a decrease in overall startle response and reduced cued fear memory. MPS IIIB also weighed significantly more than controls throughout adulthood and showed larger whole brain volumes and normalized regional volumes with intact tissue integrity as measured with magnetic resonance and diffusion tensor imaging, respectively.
    CONCLUSIONS: Together, these results indicate disease markers are present as early as the first two weeks postnatal in this model. Further, this model recapitulates social, sensory and fear-related clinical features. Our study using a mouse model of MPS IIIB provides essential baseline information that will be useful in future evaluations of potential treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号