Mouse Embryonic Stem Cells

小鼠胚胎干细胞
  • 文章类型: Journal Article
    背景:广泛表达的鸟嘌呤核苷酸交换因子,RAPGEF1(C3G),对小鼠胚胎的早期发育至关重要。它的功能是调节基因表达和细胞骨架重组,从而控制细胞增殖和分化。虽然已经预测了多个转录本,它们在小鼠组织中的表达尚未得到详细研究。
    结果:全长RAPGEF1同工型主要是由于两个热点的剪接而产生的,一种涉及外显子3,另一种涉及外显子12-14,在蛋白质的Crk结合区之后立即掺入氨基酸。这些同种型在胚胎和成人器官中的表达不同。我们检测到未注释的存在,和不可预测的转录本,以各种组合的方式掺入盒外显子,特别是在心脏,大脑,睾丸和骨骼肌。同种型转换检测为培养中的肌细胞和小鼠胚胎干细胞分化形成肌管,和胚状体分别。盒式外显子编码富含丝氨酸的多肽链,本质上是无序的,并经历磷酸化。使用AlphaFold的计算机结构分析表明,盒外显子的存在改变了分子内相互作用,对于调节催化活性很重要。基于LZerD的对接研究预测,具有一个或多个盒外显子的同种型在与其靶GTP酶的相互作用方面有所不同,RAP1A.
    结论:我们的结果证明了新的RAPGEF1亚型的表达,并预测盒外显子包含作为调节各种组织和分化过程中RAPGEF1活性的另一种手段。
    BACKGROUND: The ubiquitously expressed Guanine nucleotide exchange factor, RAPGEF1 (C3G), is essential for early development of mouse embryos. It functions to regulate gene expression and cytoskeletal reorganization, thereby controlling cell proliferation and differentiation. While multiple transcripts have been predicted, their expression in mouse tissues has not been investigated in detail.
    RESULTS: Full length RAPGEF1 isoforms primarily arise due to splicing at two hotspots, one involving exon-3, and the other involving exons 12-14 incorporating amino acids immediately following the Crk binding region of the protein. These isoforms vary in expression across embryonic and adult organs. We detected the presence of unannotated, and unpredicted transcripts with incorporation of cassette exons in various combinations, specifically in the heart, brain, testis and skeletal muscle. Isoform switching was detected as myocytes in culture and mouse embryonic stem cells were differentiated to form myotubes, and embryoid bodies respectively. The cassette exons encode a serine-rich polypeptide chain, which is intrinsically disordered, and undergoes phosphorylation. In silico structural analysis using AlphaFold indicated that the presence of cassette exons alters intra-molecular interactions, important for regulating catalytic activity. LZerD based docking studies predicted that the isoforms with one or more cassette exons differ in interaction with their target GTPase, RAP1A.
    CONCLUSIONS: Our results demonstrate the expression of novel RAPGEF1 isoforms, and predict cassette exon inclusion as an additional means of regulating RAPGEF1 activity in various tissues and during differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物分子缩合物在染色质活性中起着重要作用,主要通过浓缩和分隔蛋白质和/或核酸。然而,由于缺乏用于体内系统鉴定的专用计算工具,它们的基因组景观和组成在很大程度上仍未被探索。为了解决这个问题,我们开发了CondSigDetector,设计用于检测凝析油样染色质相关蛋白质共占用特征(CondSigs)的计算框架,预测不同染色质相关生物分子缩合物的基因组位点和组成蛋白。将此框架应用于小鼠胚胎干细胞(mESC)和人类K562细胞,使我们能够描绘染色质相关生物分子缩合物的高分辨率基因组景观,并发现已知和潜在未知的生物分子缩合物。多组学分析和实验验证进一步验证了CondSigs的缩合性质。此外,我们的研究揭示了染色质相关生物分子缩合物对染色质活性的影响。总的来说,CondSigDetector提供了一种方法来解码染色质相关凝聚物的基因组景观,有助于更深入地了解它们的生物学功能和细胞中的潜在机制。
    Biomolecular condensates play a significant role in chromatin activities, primarily by concentrating and compartmentalizing proteins and/or nucleic acids. However, their genomic landscapes and compositions remain largely unexplored due to a lack of dedicated computational tools for systematic identification in vivo. To address this, we develop CondSigDetector, a computational framework designed to detect condensate-like chromatin-associated protein co-occupancy signatures (CondSigs), to predict genomic loci and component proteins of distinct chromatin-associated biomolecular condensates. Applying this framework to mouse embryonic stem cells (mESC) and human K562 cells enable us to depict the high-resolution genomic landscape of chromatin-associated biomolecular condensates, and uncover both known and potentially unknown biomolecular condensates. Multi-omics analysis and experimental validation further verify the condensation properties of CondSigs. Additionally, our investigation sheds light on the impact of chromatin-associated biomolecular condensates on chromatin activities. Collectively, CondSigDetector provides an approach to decode the genomic landscape of chromatin-associated condensates, facilitating a deeper understanding of their biological functions and underlying mechanisms in cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    亲本组蛋白跨复制叉的遗传被认为介导表观遗传记忆。这里,我们发现裂变酵母Mrc1(人类中的CLASPIN)结合H3-H4四聚体,并作为对称亲本组蛋白遗传的中心协调者起作用。关键连接体结构域中的Mrc1突变体破坏了亲本组蛋白与滞后链的分离,与Mcm2组蛋白结合突变体相当。两种突变体均显示H3K9me介导的基因沉默的克隆和不对称丢失。AlphaFold预测了Mrc1和Mcm2对H3-H4四聚体的共同陪伴,Mrc1连接域桥接了组蛋白和Mcm2结合。生化和功能分析验证了该模型,并揭示了Mrc1功能的二重性:在连接子域中禁用组蛋白结合会破坏滞后链再循环,而另一个组蛋白结合突变会损害前导链再循环。我们建议Mrc1在滞后和领先的链再循环途径之间切换组蛋白,部分是通过复制体内部共同陪伴,确保表观遗传传递到两个子细胞。
    The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    研究七氟醚诱导的小鼠胚胎干细胞(mESCs)分化为神经干细胞(mNSCs)的扰动,我们的研究描绘了一个新的SIRT1/PRRX1/DRD2/PKM2/NRF2轴作为这一复杂过程的关键参与者.七氟醚处理阻碍mESC分化,多能性和神经谱系标记的表达模式改变证明了这一点。机械上,七氟醚下调Sirt1,启动信号级联。七氟醚可能通过抑制SIRT1及其下游基因Prrx1和DRD2的表达来抑制PKM2二聚化和NRF2信号通路的激活,最终抑制mESCs分化为mNSCs。这些发现有助于我们理解七氟醚诱导的神经毒性的分子基础,为通过调节SIRT1/PRRX1/DRD2/PKM2/NRF2轴七氟醚诱导的mESCs分化扰动提供治疗干预的潜在途径。
    Investigating the sevoflurane-induced perturbation in the differentiation of mouse embryonic stem cells (mESCs) into neural stem cells (mNSCs), our study delineates a novel SIRT1/PRRX1/DRD2/PKM2/NRF2 axis as a key player in this intricate process. Sevoflurane treatment hindered mESC differentiation, evidenced by altered expression patterns of pluripotency and neural lineage markers. Mechanistically, sevoflurane downregulated Sirt1, setting in motion a signaling cascade. Sevoflurane may inhibit PKM2 dimerization and NRF2 signaling pathway activation by inhibiting the expression of SIRT1 and its downstream genes Prrx1 and DRD2, ultimately inhibiting mESCs differentiation into mNSCs. These findings contribute to our understanding of the molecular basis of sevoflurane-induced neural toxicity, presenting a potential avenue for therapeutic intervention in sevoflurane-induced perturbation in the differentiation of mESCs into mNSCs by modulating the SIRT1/PRRX1/DRD2/PKM2/NRF2 axis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    组蛋白磷酸化在调节整个真核生物的不同细胞过程中起着重要作用。解开靶向特定组蛋白位点的激酶是破译潜在机制的关键。在组蛋白尾巴上可以经历磷酸化的各种位点中,负责H3.3S31磷酸化的激酶仍然难以捉摸.由于H3.3S31ph和H3T3ph都发生在有丝分裂期间,Haspin是已知的H3T3磷酸化激酶,我们研究了其在H3.3S31磷酸化中的潜在作用。我们采用了CRISPR/Cas9,RNA干扰,和特定的小分子抑制剂,以消除Haspin功能在各种细胞类型。我们的数据一致显示Haspin和H3.3S31ph之间存在联系。此外,体外激酶测定提供了支持Haspin对H3.3S31ph的贡献的证据。针对Haspin和AuroraB的功能损失和获得实验进一步表明了一种等级关系。Haspin作为AuroraB的下游激酶,特异性协调mESC中的H3.3S31磷酸化。这项研究揭示了Haspin作为一种激酶在有丝分裂过程中调节H3.3S31磷酸化的新作用。这一发现有望扩大我们对Haspin和H3.3S31ph在哺乳动物中的功能意义的理解。
    Histone phosphorylation is instrumental in regulating diverse cellular processes across eukaryotes. Unraveling the kinases that target specific histone sites is key to deciphering the underlying mechanisms. Among the various sites on histone tails that can undergo phosphorylation, the kinase responsible for H3.3S31 phosphorylation remained elusive. Since both H3.3S31ph and H3T3ph occur specifically during mitosis, and Haspin is the known kinase for H3T3 phosphorylation, we investigated its potential role in H3.3S31 phosphorylation. We employed CRISPR/Cas9, RNA interference, and specific small molecule inhibitors to eliminate Haspin function in various cell types. Our data consistently revealed a link between Haspin and H3.3S31ph. Furthermore, in vitro kinase assays provided evidence supporting Haspin\'s contribution to H3.3S31ph. Loss- and gain-of-function experiments targeting Haspin and Aurora B further suggested a hierarchical relationship. Haspin acts as a downstream kinase of Aurora B, specifically orchestrating H3.3S31 phosphorylation in mESCs. This study unveils a novel role for Haspin as a kinase in regulating H3.3S31 phosphorylation during mitosis. This discovery holds promise for expanding our understanding of the functional significance of Haspin and H3.3S31ph in mammals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胚胎中的原始表皮细胞和体外的多能干细胞经历发育进展至具有谱系规格能力的形成状态。在这个转变过程中,转录因子和染色质被重新连接以编码新的功能特征。这里,我们研究了丝裂原活化蛋白激酶(ERK1/2)信号在多能状态转换中的作用.我们表明,小鼠胚胎干细胞中ERK激活的主要结果是消除Nanog,这促使幼稚状态的基因调控网络崩溃。pERK动力学的变异性导致Nanog的异质损失和异时态转变。Nanog的击倒允许在没有ERK激活的情况下退出。然而,向形成性多能性的转变不会进行,细胞崩溃到不确定的身份。该结果是由于未能维持中心多能性因子0ct4的表达。因此,在形成性过渡过程中,ERK信号既可以消除幼稚状态,又可以保留多能性。这些结果说明了单个信号通路如何启动和确保细胞状态之间的转换。
    Naïve epiblast cells in the embryo and pluripotent stem cells in vitro undergo developmental progression to a formative state competent for lineage specification. During this transition, transcription factors and chromatin are rewired to encode new functional features. Here, we examine the role of mitogen-activated protein kinase (ERK1/2) signalling in pluripotent state transition. We show that a primary consequence of ERK activation in mouse embryonic stem cells is elimination of Nanog, which precipitates breakdown of the naïve state gene regulatory network. Variability in pERK dynamics results in heterogeneous loss of Nanog and metachronous state transition. Knockdown of Nanog allows exit without ERK activation. However, transition to formative pluripotency does not proceed and cells collapse to an indeterminate identity. This outcome is due to failure to maintain expression of the central pluripotency factor Oct4. Thus, during formative transition ERK signalling both dismantles the naïve state and preserves pluripotency. These results illustrate how a single signalling pathway can both initiate and secure transition between cell states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    了解对氧张力不平衡的主要适应性反应的调节基础的分子机制对于理解组织稳态和疾病至关重要。缺氧诱导转录因子(HIF)协调控制这些适应性反应的转录组中的变化。这里,我们专注于转录阻遏物碱性-螺旋-环-螺旋家族成员e40(Bhlhe40)的功能作用,我们先前在荟萃分析中发现,该基因是各种细胞类型对缺氧反应中最一致的上调基因之一。我们使用基因编辑策略在小鼠胚胎干细胞(mESC)中研究了Bhlhe40在控制增殖和血管生成中的作用,该细胞在胚状体(EB)中分化。我们观察到缺氧诱导的Bhlhe40表达与低氧张力下多能mESCs的快速增殖相容。然而,在EB中,缺氧在血管结构内的大多数祖细胞和内皮细胞中引发了Bhlhe40依赖性细胞周期停滞。此外,Bhlhe40基因敲除增加了常氧下EBs的基础血管化,并加剧了缺氧诱导的血管化,支持Bhlhe40作为血管形成的负调节剂的新作用。我们的发现暗示Bhlhe40介导对缺氧的关键功能适应性反应,如增殖停滞和血管生成。
    Knowledge of the molecular mechanisms that underlie the regulation of major adaptive responses to an unbalanced oxygen tension is central to understanding tissue homeostasis and disease. Hypoxia-inducible transcription factors (HIFs) coordinate changes in the transcriptome that control these adaptive responses. Here, we focused on the functional role of the transcriptional repressor basic-helix-loop-helix family member e40 (Bhlhe40), which we previously identified in a meta-analysis as one of the most consistently upregulated genes in response to hypoxia across various cell types. We investigated the role of Bhlhe40 in controlling proliferation and angiogenesis using a gene editing strategy in mouse embryonic stem cells (mESCs) that we differentiated in embryoid bodies (EBs). We observed that hypoxia-induced Bhlhe40 expression was compatible with the rapid proliferation of pluripotent mESCs under low oxygen tension. However, in EBs, hypoxia triggered a Bhlhe40-dependent cell cycle arrest in most progenitor cells and endothelial cells within vascular structures. Furthermore, Bhlhe40 knockout increased the basal vascularization of the EBs in normoxia and exacerbated the hypoxia-induced vascularization, supporting a novel role for Bhlhe40 as a negative regulator of blood vessel formation. Our findings implicate Bhlhe40 in mediating key functional adaptive responses to hypoxia, such as proliferation arrest and angiogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    复杂的微环境信号在组织形态发生过程中协调影响细胞行为和命运。然而,关于特定局部生态位信号如何影响细胞行为和命运的潜在机制还没有完全理解,由于缺乏体外平台,定量,空间,并独立操纵个体生态位信号。这里,基于蛋白质的3D单细胞微生态位(3D-SCμN)的微阵列,精确设计的生物物理和生化生态位信号,通过多光子微加工和微图案化技术进行微印刷。小鼠胚胎干细胞(mESC)作为模型细胞,以研究局部生态位信号如何影响干细胞的行为和命运。通过精确设计3DSCμNs的内部微结构,我们证明细胞分裂方向可以由生物物理小生境信号控制,以细胞形状独立的方式。将细胞分裂方向限制在主导轴后,单个mESC暴露于不对称的生化生态位信号,具体来说,一侧的细胞-细胞粘附分子和另一侧的细胞外基质。我们证明,对称破缺(不对称)小生境信号成功触发细胞极性形成,并偏置不对称细胞分裂的方向,有丝分裂过程导致两个具有不同命运的子细胞,在mESC中。
    Intricate microenvironment signals orchestrate to affect cell behavior and fate during tissue morphogenesis. However, the underlying mechanisms on how specific local niche signals influence cell behavior and fate are not fully understood, owing to the lack of in vitro platform able to precisely, quantitatively, spatially, and independently manipulate individual niche signals. Here, microarrays of protein-based 3D single cell micro-niche (3D-SCμN), with precisely engineered biophysical and biochemical niche signals, are micro-printed by a multiphoton microfabrication and micropatterning technology. Mouse embryonic stem cell (mESC) is used as the model cell to study how local niche signals affect stem cell behavior and fate. By precisely engineering the internal microstructures of the 3D SCμNs, we demonstrate that the cell division direction can be controlled by the biophysical niche signals, in a cell shape-independent manner. After confining the cell division direction to a dominating axis, single mESCs are exposed to asymmetric biochemical niche signals, specifically, cell-cell adhesion molecule on one side and extracellular matrix on the other side. We demonstrate that, symmetry-breaking (asymmetric) niche signals successfully trigger cell polarity formation and bias the orientation of asymmetric cell division, the mitosis process resulting in two daughter cells with differential fates, in mESCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们最近的研究揭示了小鼠AprataxinPNK样因子(APLF)在发育中的作用。然而,小鼠APLF的全面表征仍未完全探索。基于域删除研究,在这里,我们报道了小鼠APLF的酸性结构域和叉头相关(FHA)结构域可以像各自的人类直向同源物一样陪伴组蛋白并修复DNA。小鼠胚胎干细胞中的免疫荧光研究显示APLF与γ-微管蛋白共定位在中心体内和周围,并通过PLK4磷酸化控制中心体的数量和完整性。酶分析确定小鼠APLF为激酶。对接研究鉴定了FHA结构域内的三个推定的ATP结合位点。定点诱变显示FHA结构域内的R37残基对于APLF的激酶活性是不可缺少的,从而调节中心体数目。这些发现可能有助于我们理解不同病理和发育条件下的APLF,并揭示包含可能影响多个细胞过程的FHA结构域的蛋白质的非规范激酶活性。
    Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF\'s Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:多能干细胞分化为所需谱系是再生医学和基于细胞的治疗的关键方面。尽管RNA干扰(RNAi)技术被广泛用于此,导致分化的靶基因的长期沉默方法仍然是一个挑战。由于递送效率低,RNAi对靶基因的持续敲除通常效率低下。方案引起与病毒载体相关的毒性和安全性问题。早些时候,我们建立了八精氨酸功能化的羟基磷灰石纳米载体(R8HNP),用于在小鼠胚胎干细胞中递送针对多能性标记基因的小干扰RNA(siRNA)。尽管我们证明了靶基因的优秀敲除效率,导致分化的持续基因沉默尚未实现.
    方法:为了建立使用R8HNP的持续非病毒基因沉默方案,我们研究了siRNA递送的各种方法:粘附细胞的双重递送(Adh-D),悬浮递送,然后粘附递送(Susp+Adh),暂停单交货(Susp-S)和暂停多交货(Susp-R)。通过逆转录酶-PCR分析了多能标记基因的持续敲除,然后进行分化。荧光激活细胞分选和免疫荧光技术。还测试了重复暴露R8HNP对细胞活力的影响。
    结果:在测试的方案中,通过重复悬浮递送R8HNP-siRNA缀合物,获得了长时间最有效的靶基因敲低.多能性标记基因的长期沉默导致R1ESC主要向胚胎外和外胚层谱系分化。细胞对R8HNP的重复暴露表现出优异的耐受性。
    结论:结果表明,R8HNP是有希望的,生物相容性用于延长基因沉默和获得用于治疗的分化细胞的非病毒替代品。
    BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved.
    METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested.
    RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs.
    CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号